Staying CALM Beyond Deterministic Queries

Tim Baccaert Bas Ketsman

Vrije Universiteit Brussel

Dutch-Belgian Database Day, 2022

Shared-Nothing

State is local to each node, communication done through message passing.

Asynchronous Messaging messages may arrive out-of-order and with arbitrary (but finite) delay.

Is there a path from A to B?

Is there a path from A to B?

Node 1 Node 2

Deadlock Detection [5]

Is there a cycle in the waits-for graph?

Is there a path from A to B?

Garbage Collection [5]

Is this memory object still referenced?

Deadlock Detection [5]

Is there a cycle in the waits-for graph?

Is there a path from A to B?

Garbage Collection [5]

Is this memory object still referenced?

Deadlock Detection [5]

Is there a cycle in the waits-for graph?

Scheduling

Do all nodes agree on an execution order?

Deadlock Detection

Nodes can run almost independent of each other

e.g., Conjunctive Queries, ...

High Coordination

Highly complex dependency relation between nodes

e.g., Paxos, 2PC, Raft, ...

CALM Theorem [1, 2, 4] **C**onsistency **A**nd **L**ogical **M**onotonicity

4

CALM Theorem [1, 2, 4] **C**onsistency **A**nd **L**ogical **M**onotonicity

Monotonic Query

Nodes oblivious to other nodes a priori

No Coordination

CALM Theorem [1, 2, 4] **C**onsistency **A**nd **L**ogical **M**onotonicity

Monotonic Query

 \subset

Semi/Disjoint-Monotonic Query Nodes oblivious to other nodes a priori

Nodes know data partitioning strategy (+ oblivious to nodes) No Coordination

Light Coordination

4

Pathfinding in **Datalog** (i.e., monotonic query language)

```
Path(x, y) :- Edge(x, y)
Path(x, z) :- Path(x, y), Edge(y, z)
```

Pathfinding in **Datalog** (i.e., monotonic query language)

```
Path(x, y) :- Edge(x, y)
Path(x, z) :- Path(x, y), Edge(y, z)
```

Deadlock Detection in **Datalog**

```
WaitsFor(x, y) :- DirEdge(x, y)
WaitsFor(x, z) :- WaitsFor(x, y), DirEdge(y, z)
Deadlock() :- WaitsFor(x, y), WaitsFor(y, x)
```

```
Pathfinding in Datalog (i.e., monotonic guery language)
Path(x, y) := Edge(x, y)
Path(x, z) := Path(x, y), Edge(y, z)
Deadlock Detection in Datalog
WaitsFor(x, y) :- DirEdge(x, y)
WaitsFor(x, z) := WaitsFor(x, y), DirEdge(y, z)
Deadlock() :- WaitsFor(x, y), WaitsFor(y, x)
             Pathfinding
         Deadlock Detection
                                              High Coordination
          Low Coordination
```

Garbage Collection [5]

Nodes **cannot locally decide** if an object is garbage **until** it has seen the **entire graph**.

⇒ All nodes must have discovered each other

Examples until now...

Examples until now...

Selection

Examples until now...

ConstraintsModeling Systems with Behaviors

Id: Nodes have a unique identity

ConstraintsModeling Systems with Behaviors

Id: Nodes have a unique identity

1 2

Node 1 Node 2

Id+All: each node knows the unique identity of all other nodes

1221

Node 1 Node 2

ConstraintsModeling Systems with Behaviors

Id: Nodes have a unique identity

1 2

Node 1 Node 2

Id+All: each node knows the unique identity of all other nodes

12 21

Node 1 Node 2

Id+All+Ord: each node agrees on an order over all of its stored data/state

1<2

Node 1 Node 2

CALM Theorem (Revisited) [3]

Scheduling requires a way for nodes to make **globally consistent choices**

⇒ **Ord**-constraints (e.g., choices made by node w. max/min **Id**).

- ► CALM for languages with **non-determinism** and **data placement**.
- Generalized the CALM model to arbitrarily configured data systems.
- ► Introduced a **coordination spectrum**:

more powerful configurations = more inherent coordination

References

- [1] Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. 2013. Relational Transducers for Declarative Networking. J. ACM. 60, 2, 1-38.
- [2] Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn. 2016. Weaker Forms of Monotonicity for Declarative Networking: A More Fine-Grained Answer to the CALM-Conjecture. ACM Trans. Database Syst. 40, 4, 1-45.
- [3] Tim Baccaert and Bas Ketsman. 2023. Distributed Consistency Beyond Queries (Accepted). *PODS* 2023.
- [4] Joseph M. Hellerstein. 2010. The Declarative Imperative: Experiences and Conjectures in Distributed Logic. SIGMOD Rec. 39, 1, 5-19.
- **[5]** Joseph M. Hellerstein and Peter Alvaro. 2020. Keeping CALM: When Distributed Consistency is Easy. *Commun. ACM.* 63, 9, 72-81.