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Chapter 1

Introduction

This thesis is a collection of three essays that answer questions related to Optimal Portfolio Choice
and Model Risk Assessment, two topics that have long-standing tradition in the financial and ac-
tuarial literature.

The main contribution of this thesis related to Optimal Portfolio Choice is to derive general
sufficient conditions leading to a two- or a three-fund separation for the investors’ optimal port-
folio. Consider a static portfolio choice problem in a market with a risk-free asset and n risky
assets having random returns. Given a certain investor, let ω∗ ∈ Rn be the vector that describes the
optimal amount that she should invest in each risky asset. The two-fund separation theorem holds
if there exists a vector ωM ∈ Rn, whose composition depends solely on the joint distribution of
the assets returns, such that for each investor we can write

ω∗ = α ωM , for some α ∈ R.

When this is the case, each investor’s optimal choice is to put part of the initial budget in the
market fund described byωM and the rest of the initial budget in the risk-free asset. The three-fund
separation theorem holds if there exist two vectors ωM1

,ωM2
∈ Rn whose composition depends

solely on the joint distribution of the assets returns, such that for each investor we can write

ω∗ = α1 ωM1
+ α2 ωM2

, for some α1, α2 ∈ R.

In other words, under the three-fund separation theorem, the optimal choice for any investor is to
allocate part of the initial wealth in the market funds described by ωM1

and ωM2
, while the residual

initial budget is allocated in the risk-free asset.
The relevance of the fund theorems in the economic literature is justified by the two following

observations. First, the fund separation theorems significantly simplify the optimal portfolio se-
lection problem. Under two-fund resp. three-fund separation, the original n-dimensional portfolio
optimization boils down to a one-dimensional resp. two-dimensional problem. Second, the fund
separation theorems are intimately connected with the mean-variance efficient portfolio, and pos-
sible deviations from it. In fact, the characterization of mean-variance efficient portfolios proposed
in Markowitz (1952) and Tobin (1958) is the first result obtained in the literature concerning the
fund separation theorems. Further important references in this stream of literature include Owen
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2 Introduction

and Rabinovitch (1983), Chamberlain (1983), Levy and Levy (2004), Mencía and Sentana (2009),
Pirvu and Schulze (2012) and Birge and Chavez-Bedoya (2016). More details on these and other
references related to the fund separation theorems can be found in the introductory section of
Chapter 2.

The second research area in which the present thesis gives a contribution is Model Risk As-
sessment. Many business decisions are based on a law invariant functional that assigns a number
to each probability distribution. Standard examples are the amount of capital that needs to be allo-
cated to a risky portfolio (Embrechts et al. (2013)) or the net premium that an insurance company
sets for an annuity (Dickson et al. (2009)). These two examples will receive a specific treatment in
Chapter 3 and Chapter 4, respectively.

The underlying probability distribution is usually estimated starting from certain model as-
sumptions. Therefore, making the wrong model assumptions implies that the value of any law
invariant functional of interest is miscalculated. This observation justifies a current tendency to
study what happen when some model assumptions are weakened. In most cases, having weaker
model assumptions implies that the probability distribution of interest is not completely specified,
but instead it is only known to belong to a certain family of probability distributions. Model Risk
Assessment studies what are the best- and worst-case scenarios for the quantity of interest, when
the underlying probability distribution belongs to a certain set of probability distributions. In the
literature related to Model Risk Assessment, the best- and worst-case scenarios are sometimes
called risk bounds. Equivalently, the knowledge of the best- and worst-case scenarios allow to
obtain an assessment for the quantity of interest that is robust with respect to changes in the un-
derlying model assumptions. Thus, the output of this study can be used to make well-informed
business decisions that do not rely too heavily on the specific model considered.

Historically, early results in this field of research can be dated back at least to the seminal article
Cantelli (1910). In this paper, the author points out that the probability bounds studied for example
by P. Tchebichef and I.-J. Bienaymé could be of interest for the development of risk theory with
insurance applications, and not solely from a purely mathematical point of view. Other notable
historical results in the literature related to Model Risk Assessment include, but are not limited
to, Makarov (1981) and Rüschendorf (1982), that dealt with risk aggregation under dependence
uncertainty, and Jansen et al. (1986), Kaas and Goovaerts (1986), Hürliman (1998), Hürlimann
(2002) and De Schepper and Heijnen (2010) that studied risk bounds in those situations in which
only some moments of a certain probability distribution of interest are given. For more recent
results concerning risk bounds based on the moments of a distribution, we cite Bernard et al.
(2018b), Cornilly et al. (2018) and Bernard et al. (2020a). An additional literature review can be
found in the introductory sections of Chapter 3 and Chapter 4.

Recent events have motivated further studies focused on the management of model risk. For
instance, according to Salmon (2009), the over-reliance on the David Li formula to price credit
derivates was one of the events that trigged the 2008 financial crisis. This formula assumes a
Gaussian dependence structure among the assets of interest, and thus it is not able to properly
describe the tail-dependence that is sometimes observed in the financial markets.

The relevance of Model Risk Assessment in the modern financial and insurance regulation
emerges also from several documents. As for the banking sector, a clear statement is made in
Board of Governors of the Federal Reserve System (2011):
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“The expanding use of models in all aspects of banking reflects the extent to which models
can improve business decisions, but models also come with costs. There is the direct cost of
devoting resources to develop and implement models properly. There are also the potential indirect
costs of relying on models, such as the possible adverse consequences (including financial loss) of
decisions based on models that are incorrect or misused. Those consequences should be addressed
by active management of model risk.”

For considerations concerning the insurance context, there is a growing effort toward the de-
velopment of practical procedures that can be used by actuaries to identify and manage the impact
of model risk. See, e.g., American Academy of Actuaries (2019), Black et al. (2018) and The
Deloitte Center for Regulatory Strategy (2018).

For some concrete examples of documents that underline the role of model risk in the context
of risk aggregation, the interested reader can consult Embrechts et al. (2014) in which the authors
illustrate how the study of risk aggregation problems under dependence uncertainty can offer a
contribution to the debate regarding the choice of the risk measures that should be considered for
the computation of solvency capital requirements. As for the life insurance pricing, EIOPA (2016)
highlights that any life insurance evaluation is intrinsically exposed to model risk. For example,
referring to the well-know Lee-Carter model, EIOPA (2016) state the following.

“It should be noted that the model does neither take into account uncertainty with respect to pa-
rameters nor with regard to the model. The future deviations from the best estimate may be larger
or smaller because mortality trends may occur which cannot be predicted at present. These include
for instance the effects on future mortality of changes in behavioural factors, socio-economic de-
velopments and developments in ethics. Which unknown viruses and bacteria may still have an
effect on mortality? How will the resistance of antibiotics develop and what medical developments
can be expected? All these factors may result in a situation where the future distribution of mortal-
ity around the best estimate may differ from the distribution on the basis of historic data calculated
in accordance with the model.”

1.1 This work

The second Chapter of this thesis deals with Optimal Portfolio Choice and derives sufficient con-
ditions on the joint distribution of asset returns such that a two- or three-fund theorem holds. In
Chapter 2, we show that when asset returns satisfy a location-scale property (possibly conditionally
as e.g., for a multivariate generalized hyperbolic distribution) and the investor has law-invariant
and increasing preferences, the optimal investment portfolio always exhibits two-fund or three-
fund separation. As a consequence, we recover many of the three-fund (and two-fund) separation
theorems that have been derived in the literature under very specific assumptions on preferences
or distributions. These are thus merely special cases from the general characterization result of
optimal portfolios that we provide. Moreover, we illustrate how having a two- or a three-fund
separation significantly simplify the portfolio optimization problem and allow to study possible
deviations of optimal portfolios from the mean-variance efficiency frontier.

Chapter 3 and Chapter 4 deal with Model Risk Assessment and its application in the context of
risk aggregation and life insurance pricing, respectively.



4 Introduction

The assessment of portfolio risk is often explicitly (e.g., the square root formula under Basel
III) or implicitly (e.g., credit risk portfolio models) driven by the marginal distributions of the risky
components and the correlations amongst them. In Chapter 4, we e assess the extent by which such
practice is prone to model error.

In the case of a sum of n = 2 risks, we investigate under which conditions the unconstrained
Value-at-Risk (VaR) bounds (which are the maximum and minimum VaR for S =

∑n
i=1Xi when

only the marginal distributions of the Xi are known) coincide with the (constrained) VaR bounds
when in addition one has information on some measure of dependence (e.g., Pearson correlation
or Spearman’s rho). We find that both bounds coincide if the measure of dependence takes value in
an interval that we explicitly determine. For probability levels used in risk management practice,
we show that using correlation information has typically no effect on the highest possible VaR
whereas it can affect the lowest possible VaR.

In the case of a general sum of n > 2 risks, we derive Range Value-at-Risk (RVaR) bounds
under an average correlation constraint (in addition to the knowledge of the marginal distributions).
While these bounds are not best-possible in general, we show that they are in the case of a sum of
n > 3 standard uniformly distributed risks. As far as we know, this result is the first that provides
a best-possible bound on RVaR for a general sum of n > 3 risks (uniformly distributed) under a
correlation constraint.

Survival probabilities are required in many actuarial evaluations, such as the computation of
net premiums in the life insurance business. As the output of a statistical procedure, their estima-
tion is subject to uncertainty. In Chapter 4, we propose a robust assessment for the net premium
of a standard life insurance contract with respect to the uncertainty on the estimated residual life-
time distribution function. Specifically, we provide a method to derive the range of values that
the net premium of a given contract can attain when considering all residual lifetime distribution
functions that satisfy an L2 distance constraint with a reference distribution function. The results
obtained in this chapter can be used to obtain a conservative evaluation of the net premium that
an insurance company should charge for a life insurance contract in order to avoid financial losses
due to unexpected changes in longevity trends. A key point of our analysis is showing that the
net premium bounds obtained using an L2 distance constraint be easily computed, a feature that is
not common in the literature related to Model Risk Assessment but that is important to encourage
industrial applications of this research line.

Efforts have been undertaken to make the notation as homogeneous as possible. However, due
to the different approaches considered in the chapters, different levels of mathematical notation
may be required, leading to the necessity to redefine specific notations.

1.2 Related publications

The following three chapters are based on three research papers that I co-authored:

1. Bernard C., De Vecchi C. and Vanduffel S. (2021). When do two- or three-fund separation
theorems hold? Quantitative Finance, 21(11):1869-1883.
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2. Bernard C., De Vecchi C. and Vanduffel S. (2022). The impact of correlation on (Range)
Value-at-Risk. Submitted.

3. Bernard C., De Vecchi C. and Vanduffel S. (2022). Robust assessment of life insurance
products. Submitted.





Chapter 2

When do two- or three-fund separation
theorems hold?

2.1 Introduction
James Tobin and Harry Markowitz laid out the foundation of modern portfolio theory. Specifically,
Tobin (1958) was the first to provide a (two-fund) separation theorem. He argued that in a world
with one safe asset and a large number of risky assets, investors should combine cash with a single
portfolio of risky assets. Owen and Rabinovitch (1983) point out that Tobin’s separation result
holds for any stochastic return generating process if the investor’s utility function is quadratic
and for any concave increasing utility function if the returns are multivariate normally distributed.
Chamberlain (1983) extends this last result to the class of elliptical distributions.

The assumption of quadratic utility to justify a two-fund separation is however highly problem-
atic. Indeed, quadratic utility implies increasing absolute risk-aversion, which has an unrealistic
behavioral implication in that an increase in available wealth leads to lower investments in risky
assets and not more (Huang and Litzenberger (1988)). Moreover, utility theory itself has been crit-
icized for not being consistent with real-world decision making and a series of alternative decision
theories have emerged. The most prominent amongst these is the so-called Cumulative Prospect
Theory (CPT) from Tversky and Kahneman (1992). Levy and Levy (2004) show that when returns
are normally distributed, optimal portfolios for CPT-investors are to be found in the set of mean-
variance efficient portfolios. This result was generalized by Pirvu and Schulze (2012) who show
that a two-fund separation theorem holds under elliptically distributed returns. However, whilst
each of these alternative decision theories has its own features and is of interest, none of them is
deemed suitable for accommodating all possible investors’ preferences. Therefore, in this analy-
sis we do not make specific assumptions on the choice of the behavioral theory, rather we only
assume some properties that are rarely disputed. For instance, most adopted theories agree that
more is better than less (compliance with first-order stochastic dominance) and that in addition, a
certain income is better than an uncertain one with the same mean (compliance with second-order
stochastic dominance). The results we derive hold for all the preferences that satisfy at least one
of these two key properties.

7



8 When do two- or three-fund separation theorems hold?

As for the assumption that returns can be described by a multivariate elliptical model, some
discussion is needed. As yearly returns are in essence sums of daily returns, one may expect that
they display a Gaussian pattern; see Cesari and Cremonini (2003) for formal empirical evidence.
However, studies based on daily returns show that asset returns typically exhibit skewness; see for
instance Eberlein and Keller (1995), Küchler et al. (1999), and Carr et al. (2002), amongst others.
The effect of skewness on optimal portfolio choice (under various theories of choice under risk)
has been explored in a series of papers. Assuming that asset returns are distributed according to a
location-scale mixture of normals, Mencía and Sentana (2009) show that mean-variance-skewness
efficient portfolios exhibit three-fund separation. Assuming a generalized hyperbolic (GH) skewed
Student t-distribution for the returns, Birge and Chavez-Bedoya (2016) show that three-fund sep-
aration also holds for exponential utility maximizers and they obtain explicit solutions in various
cases of interest. Vanduffel and Yao (2017) extend this result by characterizing optimal portfolios
for risk averse expected utility maximizers when returns follow a so-called multivariate generalized
hyperbolic (MGH) distribution1 (which includes the GH skewed Student t-distribution as a special
case), that is they find that all risk-averse expected utility maximizers invest in three funds only.
Kwak and Pirvu (2018) also obtain three-fund separation but model preferences with Cumulative
Prospect Theory (CPT).

In this analysis we make very weak assumptions on preferences and derive two-fund theorems
assuming the returns have a location-scale distribution and three-fund theorems when the returns
are assumed to have a conditional location-scale property. Specifically, we show first that when
returns have a location-scale property (equivalently, they are elliptically distributed), all decision
theories that are compliant with First-order Stochastic Dominance (FSD) yield optimal portfolios
that exhibit two-fund separation. So, while these theories may be very different they essentially
lead to similar portfolio compositions. Second, when the returns only need to satisfy a conditional
location-scale property (e.g., when they follow a MGH distribution) a three-fund separation can
still be obtained. The proofs of these results are rather straightforward and generalize all mentioned
specific results. For instance, Cumulative Prospect Theory preferences are consistent with FSD and
hence the results of Pirvu and Schulze (2012) (see also Levy and Levy (2004)) in the elliptical case
are a consequence of ours.

The remainder of the chapter is organized as follows. In Section 2.2 we formulate the optimal
portfolio problem and provide our assumptions relative to the preferences. In Section 2.3 we prove
a two-fund separation theorem when returns have a location scale distribution. In Section 2.4
we prove a three-fund separation theorem when returns have conditional location-scale property
(MGH distribution). Section 2.5 illustrates the theoretical results with a numerical application. We
conclude in Section 2.6.

1The MGH distribution was introduced in the literature by Barndorff-Nielsen (1978), Barndorff-Nielsen (1997)
and Blaesild and Jensen (1981) and has shown to be useful for modeling asset returns (Barndorff-Nielsen (1997),
McNeil et al. (2010)).
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2.2 Problem formulation and preferences
In this chapter we study the optimal allocation of wealth among n assets for an investor under
fairly weak assumptions on his preferences. We first describe the market setting and then discuss
the weak assumptions that we make on the investors’ preferences.

We consider a single period economy in which there are n+ 1 assets available for investment.
There is one risk-free asset yielding a fixed return r > 0 and there are n risky assets yielding
stochastic returns that are described by the vector X =(X1, . . . , Xn)T and have a joint distribution
FX. We denote by m = (m1, ...,mn)T the vector of expected returns and by ∆ their positive
definite covariance matrix. In what follows, we tacitly assume that all these quantities exist and
are finite.

Let W0 denote the total fixed initial wealth and ω := (ω1, ..., ωn)T be the vector of amounts
invested in the n different risky assets (the remaining amount is thus invested in the risk-free asset).
We call ω a portfolio. The final wealth Wω of the portfolio writes as

Wω =
n∑
i=1

ωi(1 +Xi) +

(
W0 −

n∑
i=1

ωi

)
(1 + r)

= W0(1 + r) +
n∑
i=1

ωi(Xi − r). (2.2.1)

Denote byW the set of final wealths that can be purchased with initial wealth W0 and denote by
V (·) the investor’s objective function. The investor’s goal is to determine the optimal portfolio
ω∗ (equivalently, the optimal terminal wealth Wω

∗ ∈ W) by solving the following optimization
problem

max
ω

V (Wω). (2.2.2)

In this chapter, we do not explicitly specify2 the objective function V (·). Nevertheless, we state
some properties that appear very natural for “reasonable” objective functions to satisfy. In what
follows we denote by FW the distribution function of a random terminal wealth W ∈ W and by
F−1W its quantile function (defined as the left inverse of FW ).

Definition 2.2.1. Let W1,W2 ∈ W . We say that W1 is first-order stochastically dominated by W2,
denoted as W1 ≺FSD W2, if for all p ∈ (0, 1), F−1W1

(p) 6 F−1W2
(p).

It is intuitive that investors when choosing between W1 and W2 will prefer W2 whenever
W1 ≺FSD W2.

Assumption 2.2.1 (FSD-consistency onW). Preferences V (·) are consistent with first-order stochas-
tic dominance (FSD) onW . That is, for W1,W2 ∈ W , W1 ≺FSD W2 implies V (W1) 6 V (W2)
and equality only holds when W1 and W2 have the same distribution.

2It could for instance be an expected utility, i.e., V (Wω) := E[U(Wω)] in which U(x) is some specific utility
function. It could also refer to a non-expected utility setting such as the decision theories of Yaari (1987), Tversky and
Kahneman (1992) or Quiggin (1993).
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It is known that Assumption 2.2.1 is also equivalent to having a law-invariant and increasing
objective function V (·) (see Theorem 1 in Bernard et al. (2015)). So, being consistent with FSD
is equivalent to assuming that “more is preferred to less” (a < b ⇒ V (a) < V (b)) and that
optimal choices are only driven by the distribution of final wealth and not by the states in which
cash-flows are received (law-invariance). Clearly, Assumption 2.2.1 is completely natural and
most decision theories comply with it. In fact, many economists consider a violation of the FSD
property as grounds for refuting a particular model; see, for example, Birnbaum (1997), Birnbaum
and Navarrette (1998) for more discussions. Recall also that although the original prospect theory
by Kahneman and Tversky (1979) provides explanations for phenomena that were unexplained
before, it violates first-order stochastic dominance. To overcome this potential issue, Tversky and
Kahneman (1992) have developed the cumulative prospect theory. In what follows, investors with
preferences that comply with Assumption 2.2.1 are called FSD-investors.

Definition 2.2.2. Let W1,W2 ∈ W . We say that W1 is second-order stochastically dominated by
W2, denoted as W1 ≺SSD W2, if for all p ∈ (0, 1),

∫ p
0
F−1W1

(q)dq 6
∫ p
0
F−1W2

(q)dq.

Assumption 2.2.2 (SSD-consistency). Preferences V (·) are consistent with second-order stochas-
tic dominance (SSD). That is, W1 ≺SSD W2 implies V (W1) 6 V (W2) and equality only holds
when W1 and W2 have the same distribution.

For instance, expected utility maximizers that employ an increasing and concave utility func-
tion to make decisions have preferences V (·) that are SSD-consistent. That is, W1 ≺SSD W2

implies E(u(W1)) 6 E(u(W2)), where u(x) is an increasing and concave utility function. Clearly,
SSD-consistency implies FSD-consistency but the opposite does not hold true in general. In gen-
eral, being SSD-consistent is quite a strong assumption. For instance, preferences that are consis-
tent with rank dependent utility theory exhibits FSD-consistency but not SSD-consistency (Ryan
(2006)) and the same holds true for cumulative prospect theory (see e.g., Baucells and Heukamp
(2006)). In what follows, investors with preferences that comply with Assumption 2.2.2 are called
SSD-investors.

2.3 Two-fund separation theorems

We first study a market model in which the joint distribution FX of the vector of asset returns X is
assumed to belong to a so-called location-scale family of distributions. We then derive a two-fund
theorem for FSD-investors. We point out that various two-fund theorems that have been derived
in the literature under specific assumptions on preferences (e.g., preferences according to the cu-
mulative prospect theory Tversky and Kahneman (1992)) and on distributions (e.g., following an
elliptical model) comply with this setting and are merely particular cases of the characterization
result we provide. Furthermore, we show that in this market setting, SSD-investors cannot be dis-
tinguished from FSD-investors, i.e., being SSD-consistent is equivalent to being FSD-consistent.
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2.3.1 Distributional assumption on returns
Definition 2.3.1 (Location-scale property of FX). Let Z be a real-valued random variable taking
values having zero mean and unit variance. We say that FX of X = (X1, X2, ..., Xn) has the
location-scale property associated with Z if for any vector a = (a1, . . . , an)T it holds that

aTX
d
= aTm+

√
aT∆aZ, (2.3.1)

where “ d
=” denotes the equality in distribution and where we recall that m is the vector of expected

returns of X and ∆ is their positive definite covariance matrix.

The family F of all multivariate distributions that have this location-scale property is then
called the location-scale family of distributions associated with Z.

Specifically, if the joint distribution FX of X = (X1, X2, ..., Xn) is a member of F , then for
all i, there exist mi ∈ R and δi > 0 such that Xi

d
= mi + δiZ, where mi is the mean and δi is

the standard deviation of Xi. The distributional constraint (2.3.1) is fairly restrictive, as it imposes
a condition on the distribution of all linear combinations. In fact, Chamberlain (1983) provides
a characterization result that makes it possible to conclude that the only family F satisfying the
condition in Definition 2.3.1 is the multivariate elliptical family, that is when Z is an elliptically
distributed random variable. The equivalence of (i) and (ii) in Proposition 2.3.2 can be found in
Theorem 1 of Chamberlain (1983).

Proposition 2.3.2 (Chamberlain (1983)). Let X be a random vector of Rn with invertible covari-
ance matrix ∆ (with Cholesky decomposition ∆ = LLT ) and mean m. The three following
statements are equivalent:

(i) For all a = (a1, . . . , an)T ∈ Rn, for all c ∈ R, the distribution of aTX + c is determined by
its mean aTm+ c and its variance aT∆a.

(ii) FX belongs to the multivariate elliptical family with covariance matrix ∆ = LLT and mean
vectorm, i.e., Z = L−1(X−m) is spherically distributed.

(iii) FX belongs to a location-scale family F associated to a random variable Z := Z1 (where
Z := L−1(X−m)) as described in Definition 2.3.1.

Proof. (iii)⇒(i):. Let the distribution of X be in F , as defined in Definition 2.3.1. Then, for
any a = (a1, . . . , an)T ∈ Rn, the mean and the standard deviation of aTX are equal to aTm and√

aT∆a, respectively. Moreover, the cdf of aTX can be expressed as F
a
T

X
(x) = FZ

(
x−a

T
m√

a
T

∆a

)
.

Therefore, the distribution of aTX is completely specified by its mean aTm, and its standard
deviation

√
aT∆a.

(i)⇒(ii): Assume that the distribution of aTX+ c is characterized by its mean and its variance
for all a ∈ Rn and c ∈ R. Using the Cholesky decomposition, there exists a triangular invert-
ible matrix L such that ∆ = LLT . Define T = L−1 and Z = T(X − m). Then E[Z] = 0
and the covariance matrix of Z is the identity matrix In (because cov(Z) = cov(L−1X) =
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L−1cov(X)(L−1)T = L−1∆(L−1)T = L−1LLT (L−1)T = In). Let R be an orthogonal ma-
trix, i.e. RRT = I. Define w = RZ then E[w] = 0 and the covariance matrix of w is the identity
matrix In (because cov(RZ) = Rcov(Z)RT ). For any a ∈ Rn, aTZ = aTT(X−m) = aT1 X+c1
and aTw = aTRT(X −m) = aT2 X + c2 are two portfolios with the same mean 0 and the same
variance aTa. But by (i), the distributions of aT1 X + c1 and aT2 X + c2 are characterized by their
means and variance, thus aTZ and aTw have the same distribution for all a. Thus we conclude
that Z and w have the same distribution (a distribution is characterized by the distribution of all
linear combinations as then for all t ∈ Rn, E[eit

T
X] = E[eit

T
Y], i.e. the vectors X and Y have

the same characteristic function and thus must have the same distribution). Hence Z is spherically
distributed about 0.
Proof of (ii)⇒(iii): It is well-known that the elliptical family of distributions satisfies (iii). See,
for example, Section in 3.3 McNeil et al. (2010).

2.3.2 Characterization of optimal portfolios for FSD-investors
When the joint distribution FX of the random return vector X = (X1, X2, ..., Xn) has the location-
scale property associated with Z, we obtain from (2.3.1) that the terminal wealth Wω defined by
(2.2.1) satisfies

Wω
d
= mω + δωZ (2.3.2)

with parameters mω and δω given as{
mω := E[Wω] = W0(1 + r) + ωT (µ−r1)

δω := std[Wω] =
√
ωT∆ω,

(2.3.3)

where 1 is a vector of ones. The terminal wealth Wω that arises from the portfolio allocation ω is
thus characterized by the coefficients mω and δω given in (2.3.3) and we can thus reformulate our
optimization problem (2.2.2) as

max
(δω ,mω)∈A

V (mω + δωZ) (2.3.4)

where A is the set of all couples (δω,mω), as in (2.3.3), i.e., A is given as

A :=
{(√

ωT∆ω,W0(1 + r) + ωT (m− r1)
)}

ω∈Rn
(2.3.5)

Given that the optimization (2.3.4) only deals with the mean mω and the standard deviation δω
of portfolios ω, it becomes apparent that a connection to the mean-variance analysis developed by
Markowitz (1952) holds.

Definition 2.3.3 (Mean-variance efficiency frontier). Consider a portfolio ω with terminal wealth
Wω having mean mω and variance δ2ω. The portfolio ω is mean-variance efficient if there is no
portfolio yielding a terminal wealth with the same variance but a strictly larger mean. The set A∗
⊆ A containing all pairs (δω,mω) for which ω is a mean-variance efficient portfolio is called the
mean-variance efficiency frontier.
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Proposition 2.3.4. The mean-variance efficiency frontier A∗ is explicitly given as

A∗=
{

(δω,mω) | δω > 0 and mω = W0(1 + r) + δω
√
h
}

ω∈Rn
, (2.3.6)

where
h = (m− r1)T∆−1 (m− r1) > 0. (2.3.7)

Proof. Given δω = δ, let us build the mean-variance efficient portfolio, i.e. the portfolio that solves
the optimization problem

max
ω

mω subject to δω = δ. (2.3.8)

This is a standard problem and using Lagrange multipliers one readily obtains that the optimal
portfolio is given as

ω∗ :=
δ√
h

∆−1 (m− r1) . (2.3.9)

Using the fact that ∆−1 is symmetric, the expected return of this portfolio is given by

mω∗
= W0(1 + r) + ω∗

T (m− r1)

= W0(1 + r) +
δω∗√
h

(m− r1)T ∆−1(m− r1)

= W0(1 + r) + δω∗

√
h.

It is clear from the characterization of the set A∗ that for each (δω,mω) ∈ A∗, there exists
exactly one portfolio ω yielding this specific mean mw and variance δ2w. In what follows, we
sometimes identify such portfolio ω with the pair (δω,mω) and correspondingly call A∗ also the
set of mean-variance efficient portfolios.

Proposition 2.3.5 (Two-fund theorem). When V (·) satisfies Assumption 2.2.1 and when Problem
(2.2.2) has a solution ω∗, then (δω∗ ,mω∗

) ∈ A∗. Furthermore, an optimum ω∗ is of the form

ω∗ =
δ√
h

∆−1 (m− r1) (2.3.10)

for some δ > 0 that is such that V (ω) is maximum when ω = ω∗.

Proof. Let ω∗ be an optimal solution to Problem (2.2.2). Note that ω∗ must be mean-variance
efficient, i.e., it must maximize the mean for a given standard deviation δ (Problem (2.3.8)). Indeed,
if ω∗ is not mean-variance efficient one can find another portfolio ω which is dominating in the
sense of FSD and thus yields a higher objective value. Its expression was already derived above in
(2.3.9), which ends the proof.
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There are several important implications from Proposition 2.3.5. First, regardless of their spe-
cific objective function, the optimal allocation in risky assets of FSD-investors is always propor-
tional to ∆−1 (m− r1) and the remaining funds are invested in the risk-free asset. We label
∆−1 (m− r1) as the market-fund. Hence, the optimal portfolio of FSD-investors ultimately al-
ways translate in an optimal proportion that is allocated to the market-fund. This observation is
important for practical investment advice, as eliciting the proportion (a single number) that an in-
vestor is prepared to allocate to the market-fund is much easier than eliciting his preferences (i.e.,
the objective function V (·) that he aims at maximizing). Second, solving the high-dimensional
optimal portfolio problem in (2.2.2) amounts to solving a one-dimensional problem in which the
only unknown is the parameter δ in (2.3.10), which maximizes the objective function. Third, this
proposition shows that various contributions in the literature are merely special cases of the general
characterization we provide. Levy and Levy (2004) show that under normally distributed returns,
CPT-investors select their portfolio on the mean-variance efficient frontier. This result was general-
ized by Pirvu and Schulze (2012) for elliptically distributed returns. Bertsimas et al. (2004) obtain
under an elliptical model that a two-fund theorem holds when investors minimize the expected
shortfall for a given desired expected return. However, all these results are immediately implied
by Proposition 2.3.5. In addition, from the proposition it also follows that under the distributional
assumption we make, two-fund separation holds for investors with preferences described by Rank
Dependent Utility Theory (Quiggin (1993)).

2.3.3 Characterization of optimal portfolios for SSD-investors
Recall that every SSD-investor is also an FSD-investor. Hence, Proposition 2.3.5 also applies
to SSD-investors and their optimal portfolios thus also exhibit two-fund separation. However, by
exploiting the specific characteristics of SSD-investors it might be possible to obtain a more refined
characterization of their optimal portfolio. In this regard, it can be shown that the optimal portfolio
of an SSD-investor must also solve the problem

min
ω

δω subject to mω = m. (2.3.11)

for some given m > W0(1 + r)3. Observe next that for every couple (δω,mω) in A∗ the corre-
sponding portfolio ω must be a solution to a problem of the form (2.3.11), since otherwise there
existsω′ such that δω′ < δω andmω

′ = mω, but this is not possible as we proved that the maximum
attainable expected value is a strictly decreasing function of the standard deviation and (δω,mω)
is mean-variance efficient by assumption. This means that using the extra information that optimal
portfolios must also solve a problem of the form (2.3.11) does not lead to a reduction of the setA∗.

Remark 2.3.1 (Rationalization of portfolios). In general, one cannot expect that for every mean-
variance efficient portfolio ω there exists a utility maximizer for whom this portfolio is optimum.
However, when the distribution FX of the random return vector X = (X1, X2, ..., Xn) has the

3Consider two portfolios ω and ω′ such that mω = mω
′ and δω 6 δω′ . Under the location-scale distributional

assumption, we have Wω 6cx Wω
′ . This implies that for any SSD-consistent objective function V (Wω) > V (Wω

′).
Therefore, a portfolio that does not satisfy (2.3.11) cannot be optimal for an SSD-investor.
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location-scale property this holds true. Indeed, recall that in this case we consider the problem

max
(δω ,mω)∈A

V (mω + δωZ) (2.3.12)

where A is the set that contains all couples (δω,mω) as in (2.3.3). Consider now expected utility
preferences V (.) = E(u(.)) in which the utility function is given as u(x) = x − αx2 for some
α > 0. In this case, our maximization problem reads as

max
(δω ,mω)∈A

mω − α(δ2ω +m2
ω) (2.3.13)

Clearly, if there is a solution (δω,mω) it must be such that δω is minimum for the given value
of mω. As this property holds true for all (δω,mω) ∈ A∗, we only need to show that for ev-
ery (δω,mω) ∈ A∗ there exists α > 0 such that (δω,mω) solves problem (2.3.13). On A∗ the
optimization problem writes as

max
mω>W0(1+r)

mω − α
[

(mω −W0(1 + r))2

h
+m2

ω

]
(2.3.14)

in which h is as in (2.3.7). Differentiation with respect to mω and equating to zero yields that
α = 1

2
(
mω+

mω−W0(1+r)

h

) > 0. Note that for any α > 1
2W0(1+r)

the risk-free investment is optimal

(i.e., mω = W0(1 + r) and δω = 0).

Remark 2.3.2 (Two-fund theorems without distributional assumptions). In Section 3.1 it was
shown that two-fund separation holds for general preferences under the key assumption that the
joint distribution FX of the return vector X has a location-scale property. Several contributions
in the literature also derive a two-fund theorem without making distributional assumptions on as-
set returns. In this case, however, one requires specific preferences in that these solely balance
the expected return (“reward”) and the variance (“risk”) of the terminal wealth. Specifically,
De Giorgi et al. (2011) (Theorem 1) provide a two-fund theorem when the investor preferences can
be described by

V (W ) = f(m(W ), ρ(W )),

where f is monotonically decreasing in the risk ρ(W ) and monotonically increasing in the reward
m(W ).

2.4 Three-fund separation theorems
In this section, we significantly relax the assumption of location-scale invariance for the joint distri-
bution FX of the return vector X = (X1, X2, ..., Xn). We derive a three-fund theorem and discuss
the implications thereof. Specifically, we point out that our characterization of optimality implies
various three-fund theorems that were derived in the literature under more restrictive assumptions.

Definition 2.4.1 (Location-scale mixture property of FX). Let Z be a random variable taking
values in R and having zero mean and unit variance. Let Y > 0 a.s. be a positive random variable
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that is independent of Z. We say that the joint distribution FX of X = (X1, X2, ..., Xn) has the
location-scale mixture property associated with the random variables Z and Y if for any vector
a = (a1, . . . , an)T it holds that

aTX
d
= aTµ+ Y aTγ +

√
Y
√

aTΣaZ, (2.4.1)

for some vectors µ, and γ and for the positive definite symmetric matrix Σ, which can be inter-
preted as parameters.

The family G of all multivariate distributions that have this location-scale mixture property is
then called the location-scale family of distributions associated with Z and Y .

If the joint distribution FX of X = (X1, X2, ..., Xn) is a member of the location scale multi-
variate family associated with the random variables Z and Y , then for all i, Xi belongs to the same
location-scale mixture family associated with Z and Y , i.e., there exist µi ∈ R, γi ∈ R, and σi > 0
such that Xi = µi + Y γi +

√
Y σiZ. The same is true for all univariate affine transformations of

X.
A prominent example of Definition 2.4.1 arises when FX belongs to the so-called multivariate

generalized hyperbolic (MGH) family of distributions (Section 3.2 in McNeil et al. (2010)), which
is a natural extension of the multivariate elliptical family of distributions. In this case, we find that
X = (X1, ..., Xn) ∼ FX can be represented as

(X1, ..., Xn)
d
= µ+ Y γ +

√
YAZ,

where Z is a random vector that follows a multivariate normal distribution MVNk(0, Ik), A ∈
Rn×k is a matrix to be chosen taking into account that AZ ∼MVNn(0,Σ) with Σ = AAT , and
the scalar factor in the mixture, Y , is a generalized inverse Gaussian distribution with parameters
λ, χ and ψ (Section 3.2 in McNeil et al. (2010)).

2.4.1 Characterization of optimal portfolios for FSD-investors

When the joint distribution FX of the random return vector X = (X1, X2, ..., Xn) has the location-
scale mixture property (2.4.1) associated with the random variables Z and Y , then we obtain that
the final wealth Wω satisfies

Wω
d
= µω + Y γω +

√
Y σωZ (2.4.2)

and has a distribution depending on the following three parameters
µω = W0(1 + r) + ωT (µ−r1)

γω=ωTγ

σω =
√
ωTΣω

. (2.4.3)

In this regard, we point out that unlike the case of a distribution FX with a location-scale
property, the parameters µω and σω can no longer be readily interpreted as the expected value and
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standard deviation of the terminal wealth Wω. It is straightforward to show that
E(Wω) = µω + E(Y )γω,

var(Wω) = γ2ωvar(Y ) + σ2
ωE(Y ),

skew(Wω) =
γ
3
ωE[(Y−E(Y ))

3]+3γωσ
2
ωvar(Y )+σ

3
ωE
(
Y

3
2

)
E(Z3

)

var(Wω)
3
2

,

(2.4.4)

where we used the following formula for the skewness, skew(Wω) = E[(Wω−E(Wω))
3
]

var(Wω)
3
2

.

In order to solve the portfolio optimization problem (2.2.2) under the new assumption on the
return distributions, we can reformulate this problem now as

max
(µω ,σω ,γω)∈B

V (Wω) (2.4.5)

where the set of triplets B is given as

B :=
{(
W0(1 + r) + ωT (µ− r1),

√
ωTΣω,ωTγ

)}
ω∈Rn

(2.4.6)

Definition 2.4.2 (“Mean-skewness-variance” efficiency frontier). Consider a portfolio ω with ter-
minal wealthWω having parameters µω, γω and σω. The portfolioω is said to be “mean-skewness-
variance” efficient if there is no portfolio that has the same value for σω while having values for
µω and γω that are at least as big. In particular, the set B∗ containing all triplets (µω, γω, σω)
for which ω is a “mean-skewness-variance” efficient portfolio is called the “mean-skewness-
variance" efficient frontier.

Proposition 2.4.3. The “mean-skewness-variance” efficiency frontier B∗ is explicitly given as

B∗=

(µω, σω, γω)

∣∣∣∣∣∣ µω = W0(1 + r) + kγω
g

+

√
hg−k2

√
σ
2
ωg−γ

2
ω

g
,

σω > 0, γω ∈
[
k√
h
σω,
√
gσω

)  (2.4.7)

where h, g and k are defined as follows

h = (µ− r1)TΣ−1 (µ− r1) > 0, g = γTΣ−1γ > 0, k = (µ− r1)TΣ−1γ. (2.4.8)

Proof. We first consider the problem:

max
ω

µω subject to σω = σ, γω = γ. (2.4.9)

The well-posedness of Problem (2.4.9) is discussed in Appendix 2.7.1, where we show that the
constraints σ and γ must satisfy γ2 < gσ2. Equivalently, we first consider the maximization of

n∑
i=1

ωi(µi − r) +W0(1 + r)− λ1

(
n∑
i=1

n∑
j=1

ωiωjσij − σ2

)
− λ2

(
n∑
i=1

ωiγi − γ

)
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in which λ1 and λ2 are Lagrange multipliers and we have used the expression in (2.4.3). After
differentiation with respect to ωi and equating to 0, we can rewrite the n equations in the following
condensed way

ω∗ =
1

2λ1
Σ−1 (µ− r1)− λ2

2λ1
Σ−1γ

where λ1 and λ2 are such that ωT∗ γ = γ and ωT∗Σω∗ = σ2. After rewriting this as a quadratic
equation in λ2 we obtain after some calculation that

λ1 =

√
hg − k2

2
√
σ2g − γ2

, λ2 =
k

g
− γ

g

√
hg − k2√
σ2g − γ2

.

The portfolio ω∗σ,γ that solves Problem (2.4.9) is thus given as

ω∗σ,γ =

√
σ2
ωg − γ2ω√
hg − k2

Σ−1 (µ− r1)−

(
k
√
σ2
ωg − γ2ω

g
√
hg − k2

− γω
g

)
Σ−1γ. (2.4.10)

To obtain the value for µω that corresponds to the portfolio ω∗σ,γ , note that

µω = W0(1 + r) +
(
ω∗σ,γ

)T
(µ−r1).

We then obtain that

(
ω∗σ,γ

)T
(µ−r1) =

√
σ2
ωg − γ2ω√
hg − k2

(µ− r1)T Σ−1(µ−r1)−

(
k
√
σ2
ωg − γ2ω

g
√
hg − k2

− γω
g

)
γTΣ−1(µ−r1)

=

√
σ2
ωg − γ2ω√
hg − k2

h−

(
k
√
σ2
ωg − γ2ω

g
√
hg − k2

− γω
g

)
k =

kγω
g

+

√
σ2
ωg − γ2ω√
hg − k2

(
hg − k2

g

)

=
kγω
g

+

√
σ2
ωg − γ2ω

√
hg − k2

g
,

where we used the fact that k = kT = γTΣ−1(µ−r1). We denote by B∗1 the set of portfolios that
have maximum value for µω given σω and γω. This set is thus explicitly given as

B∗1=

{
(µω, σω, γω)

∣∣∣∣∣ µω = W0(1 + r) + kγω
g

+

√
hg−k2

√
σ
2
ωg−γ

2
ω

g
,

σω > 0, γω ∈
(
−√gσω,

√
gσω

) }
(2.4.11)

Clearly, any “mean-skewness-variance” efficient portfolio belongs to B∗1.

Next, we study for a given value for σω, the functional relationship between µω and γω on the
set B∗1. We compute the following first and second derivatives

∂µω

∂γω
=
k

g
−
√
hg − k2

g

γω√
σ2
ωg − γ2ω

(2.4.12)



2.4. Three-fund separation theorems 19

and
∂2µω

∂2γω
= −

√
hg − k2

g

 γ2ω(
σ2
ωg − γ2ω

) 3
2

+
(
σ2
ωg − γ2ω

)− 1
2

 . (2.4.13)

Clearly, the second-order derivative is always strictly negative for γω ∈ (−σω
√
g, σω

√
g). Hence,

we conclude that for a given value for σω, µω is a strictly concave function of γω, and an easy
calculation shows it attains its maximum when γω = σω

k√
h

. Let now B∗ be the subset of B∗1 in

which we restrict γω to the interval
[
k√
h
σω,
√
gσω

)
. Namely,

B∗=

(µω, σω, γω)

∣∣∣∣∣∣ µω = W0(1 + r) + kγω
g

+

√
hg−k2

√
σ
2
ωg−γ

2
ω

g
,

σω > 0, γω ∈
[
k√
h
σω,
√
gσω

)  . (2.4.14)

A graphical illustration of the set B∗ is presented in Figure 2.1.

Figure 2.1: Set B∗. Using the market parameters given in Table 2.3, this graph shows the shape of the
“mean-skewness-variance" frontier B∗.

Any “mean-skewness-variance" portfolio must strictly belong to B∗. Indeed it cannot belong
to B∗1 \B∗, as in this case one can always find a portfolio in B∗ with the same σω, and higher values
for γω and µω. Conversely, every portfolio in B∗ is “mean-skewness-variance” efficient (note that
µω is decreasing in γω).
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Proposition 2.4.4 (Three-fund theorem for FSD-investors). When V (·) satisfies Assumption 2.2.1
and when Problem (2.4.5) has a solution ω∗, then (µω

∗ , σω∗ , γω∗) must be in the set B∗. Further-
more, the optimum ω∗ is given as

ω∗ := ω∗σ
ω
∗ ,γ

ω
∗ =

√
σ2
ω
∗g − γ2ω∗√
hg − k2

Σ−1 (µ− r1)−

k
√
σ2
ω
∗g − γ2ω∗

g
√
hg − k2

− γω∗

g

Σ−1γ,

where σω∗ > 0 and γω∗ ∈
[
k√
h
σω∗ ,
√
gσω∗

)
are chosen such that V (Wω

∗) is maximum.

Proof. Let ω∗ be the solution to Problem (2.4.5), i.e., the optimal portfolio for the objective func-
tion V (·), that is consistent with FSD. Let (µω

∗ , σω∗ , γω∗) be the parameters of the terminal wealth
determined by ω∗. If (µω

∗ , σω∗ , γω∗) is not in B∗1, then it is possible to construct a portfolio ω′, that
has the same parameters σω∗ and γω∗ , but a strictly higher parameter µω

′ > µω
∗ . The portfolio ω′

strictly dominates ω∗ in FSD. As V (·) is consistent with FSD, this implies V (Wω
′) > V (Wω

∗),
which violates the hypothesis of optimality of ω∗. If ω∗ is in B∗1 \ B∗ then we can find a portfolio
in B∗ with the same σω, a higher γω and a higher or equal µω, which violates again the hypothesis
of optimality of ω∗. Finally, the expression of a “mean-skewness-variance” efficient portfolio ω∗

is given in (2.4.10), which ends the proof.

From Proposition 2.4.4, the optimal portfolio thus consists in investing part of the initial wealth
in the risk-free asset and another part in a linear combination of two funds, Σ−1 (µ− r1) and
Σ−1γ. Moreover, the composition of these two funds does not depend on the investor’s pref-
erences. The preferences of the investor translate into optimal weights that are allocated to both
funds. Thus, the proposition also implies that solving the high-dimensional optimal portfolio prob-
lem in (2.2.2) can be reduced to solving a two-dimensional problem in R2 (i.e., the two optimal
weights to be determined). Moreover, Proposition 2.4.4 shows that a three-fund theorem holds
in any setting where the distribution of asset returns exhibits a location-scale mixture property
and where preferences are FSD-consistent. Therefore, we recover various results in the litera-
ture in which three-fund theorems have been derived under specific assumptions on distributions
and preferences. Birge and Chavez-Bedoya (2016) and Birge and Chavez-Bedoya (2020) derive a
three-fund theorem under expected utility theory with exponential utility, using t-skewed returns
and GH returns, respectively. As yet another example, when preferences are according to cumu-
lative prospect theory and returns follow a t-skewed distribution Kwak and Pirvu (2018) show
three-fund separation. All these results now immediately follow from Proposition 2.4.4.

Remark 2.4.1 (Connection with Mencía and Sentana (2009).). In Proposition 2.4.3, we show
that all optimal portfolios for a FSD-investor belong to set B∗, the “mean-skewness-variance"
efficiency frontier. Observe that a mean-variance-skewness frontier was also derived in Mencía
and Sentana (2009) under the assumption that asset returns are distributed according to a location-
scale mixture of normals, a case that is included4 in our set-up. Mencía and Sentana (2009)

4The location-scale mixture of normals (LSMN) considered in Mencía and Sentana (2009) can be seen as a special
case of location-scale mixtures (Definition 2.4.1) for which Z ∼ N(0, 1).
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obtain a three-fund separation for the portfolios maximizing “skewness” γω, given µω and σω.
Specifically, using our parametrization they solve a problem that can equivalently expressed as

max
ω

γω subject to σω = σ, µω = µ. (2.4.15)

In their Proposition 4, Mencía and Sentana (2009) call all the portfolios that solve (2.4.15) mean-
variance-skewness efficient portfolios, and show that these portfolios can be expressed as a linear
combination of the risk-free asset and the two funds Σ−1 (µ− r1) and Σ−1γ. Observe that any
portfolio in B∗ is also a solution of Problem (2.4.15). Specifically, in Appendix 2.7.2 we show that
B∗ is a strict subset of the mean-variance-skewness frontier derived in Mencía and Sentana (2009).
Thus, assuming that the objective is FSD-consistent makes it possible to reduce further the set of
all mean-variance-skewness efficient portfolios, as in Mencía and Sentana (2009). Furthermore,
additional assumptions on V (·) may lead to sets of optimal portfolios that are even smaller. For
instance, Birge and Chavez-Bedoya (2020) prove that the set of optimal portfolios for investors
maximizing expected exponential utility (denoted as Q-KE frontier) can be described using only
two parameters, instead of three, as it is the case for B∗. Interestingly, the Q-KE frontier has a
shape that resembles the mean-variance efficient frontier.

Remark 2.4.2 (Three-fund theorem extension.). Some of the results obtained so far for FSD-
consistent objective functions can be extended under the weaker assumption that V (·) is µ-increasing
only. We say that an objective function V (·) is µ-increasing if given two portfolios ω and ω′ such
that σω = σ′ω, γω = γ′ω and µω > µ′ω we have that V (Wω) > V (Wω

′). A µ-increasing objective
function reflects the investor’s preferences towards the distribution with a higher location param-
eter (ceteris paribus). It is clear that if V (·) is consistent with FSD then it is also µ-increasing,
but the opposite is not true in general. Under the same distributional assumption as in Proposition
2.4.4, the optimal portfolios of µ-increasing objective functions exhibit a three-fund separation in
the sense that part of the initial wealth is invested in the risk-free asset and part in a linear combi-
nation of the two funds Σ−1 (µ− r1) and Σ−1γ. This feature follows from the fact that an optimal
portfolio for a µ-increasing investor needs to be a solution of Problem (2.4.9). Contrary to the
case of FSD optimal portfolios, a portfolio that is optimal for a µ-increasing investors, belongs to
set B∗1, defined in (2.4.11), but not necessarily to B∗, the “mean-skewness-variance” frontier. To
shed more light on this, let us consider the following class of objective functions:

Vh(Wω) = E(Wω) +
h∑
j=1

ajE[(Wω − E(Wω))j],

with h ∈ N and aj ∈ R. Functions in the form of Vh can describe preference towards the central
moment of the distribution, (for example, a2 < 0 reflects variance aversion and a3 > 0 implies pos-
itive skewness seeking) and are consistent with a Taylor approximation of expected utility around
E(Wω). Under the location-scale mixture distributional assumption, E(Wω) is an increasing func-
tion of µω, while E[(Wω − E(Wω))j] do not depend on the location parameter. Hence, Vh(Wω)
is always µ-increasing and three-fund separation holds. More generally, consider the case where
V (·) can be expressed as the difference between a “mean” function f1(µω) and a “risk” func-
tion f2(σω, γω), i.e., V (Wω) = f1(µω) − f2(σω, γω). This kind of performance decomposition
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appeared in Section 3.2 of Birge and Chavez-Bedoya (2020) in the context of portfolio selection
for an exponential utility maximizer. Again, even if V (·) is not consistent with FSD, as soon as
f1(µω) is a non-decreasing function we have that three-fund separation applies.

2.4.2 Optimal Portfolios for SSD-investors
Recall that SSD-investors are also FSD-investors and Proposition 2.3.5 thus also applies to SSD-
investors. In this section, we explore whether for SSD-investors a more specific characterization
can be derived for their optimal portfolio. In this regard, it can be shown (see e.g., Appendix 2.7.3)
that SSD-investors choose a portfolio that belongs to the set C∗ of portfolios that solve the auxiliary
problem

min
ω

σω subject to µω = µ, γω = γ. (2.4.16)

Hence the optimal portfolios for SSD-investors are to be found in the intersection C∗∩B∗, limiting
the set of admissible portfolios and perhaps also leading to a more refined characterization for the
optimal portfolio under SSD-consistent preferences. However, for every couple (µω, γω), the value
of σω such that (µω, σω, γω) ∈ B∗ is uniquely determined (see Appendix 2.7.4), and thus we get
that B∗ is a subset of C∗ and hence B∗ = C∗∩B∗ and it does not seem useful to further characterize
C∗.

Nevertheless, the following result shows that under certain market conditions, B∗ is actually
too broad in that it contains portfolios that cannot be optimal for an SSD-investor.

Proposition 2.4.5. If k + E(Y )g < 0, there exist portfolios in B∗ having an expected return that
is lower than the return given by the risk-free investment. Specifically, if k + E(Y )g < 0 then for
(µω, σω, γω) ∈ B∗ it holds that

E(Wω) < W0(1 + r) ⇐⇒ γω ∈

σω√g √
hg − k2√

(k + E(Y )g)2 + hg − k2
, σω
√
g

 . (2.4.17)

Proof. Assume k + E(Y )g < 0. Proposition 2.4.3 shows that in B∗ there exists a specific rela-
tionship between the parameter µω and the parameters (σω, γω). Here we use it to characterize
portfolios in B∗ with an expected return that is lower than the return given by the risk-free invest-
ment.

E(Wω) < W0(1 + r) ⇐⇒ µω + E(Y )γω < W0(1 + r)

⇐⇒ W0(1 + r) +
kγω
g

+

√
hg − k2

√
σ2
ωg − γ2ω

g
+ E(Y )γω < W0(1 + r)

⇐⇒ kγω
g

+

√
hg − k2

√
σ2
ωg − γ2ω

g
+ E(Y )γω < 0

⇐⇒ γω(k + E(Y )g) < −
√
hg − k2

√
σ2
ωg − γ2ω.

Since the right side of the last inequality is negative, it follows from the assumption k+E(Y )g < 0
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that if γω 6 0 then E(Wω) > W0(1 + r). Next, we consider the case γω > 0,

E(Wω) < W0(1 + r) ⇐⇒ γω > −
√
hg − k2

√
σ2
ωg − γ2ω

k + E(Y )g
> 0

⇐⇒ γ2ω >
(hg − k2)(σ2

ωg − γ2ω)

(k + E(Y )g)2

⇐⇒ γ2ω >

(
(k + E(Y )g)2

(k + E(Y )g)2 + hg − k2

)
σ2
ωg

(hg − k2)
(k + E(Y )g)2

⇐⇒ γ2ω > σ2
ωg

hg − k2

(k + E(Y )g)2 + hg − k2
.

Therefore, for the portfolios Wω in B∗,

E(Wω) < W0(1 + r) ⇐⇒ γω ∈

σω√g √
hg − k2√

(k + E(Y )g)2 + hg − k2
, σω
√
g

 .

2.5 Application

Bellman (2015) explained that to optimize an n-dimensional function on a continuous domain
by exhaustively searching a discrete grid (obtained by a crude discretization), one could easily
end up with making trillions of evaluations of the function. This is what he called “curse of
dimensionality.” Specifically, in the context of portfolio optimization, the initial dimensionality of
the problem (i.e., the number n of assets) is typically in the range 30-1000. Hence, if one considers
a grid of spacing 1/100 on the unit cube in 30 dimensions, we already have 10030 evaluations to
make, which is not feasible in practice and out-rules the use of exhaustive enumeration strategies.
It is well-known that computational tractability is greatly enhanced if the optimization problem
at hand is convex, as in this case local optima are global optima, a feature, which allows local
search algorithms to guarantee optimal solutions. However, demonstrating convexity is not always
straightforward nor always true or desirable. For instance, if one aims to maximize a lower quantile
of terminal wealth then one is using a non-convex objective that is however FSD-consistent.

A main contribution of this analysis is to show that under the rather flexible assumption of a
multivariate location-scale mixture distribution of the asset returns, any optimization problem that
is FSD-consistent can be readily approached using exhaustive search in a two-dimensional grid.
Moreover, as the optimization problem is essentially of a two-dimensional nature, explicit solutions
for concave objectives might be in reach or at least they can be easily obtained numerically.

We illustrate both features by revisiting a portfolio optimization problem that was also con-
sidered in Birge and Chavez-Bedoya (2016). Specifically, we show that the framework developed
in this chapter makes it indeed possible to transform their n-dimensional (concave) portfolio opti-
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mization problem into a concave two-dimensional problem, which is easier to deal with. Further-
more, we show that an exhaustive search can also provide the solution in a very fast way and is
straightforward to implement.

2.5.1 Concave optimization and exhaustive search

Birge and Chavez-Bedoya (2016) assume that the vector X of asset returns follows a so-called
Generalized Hyperbolic Skew-t distribution; that is, the variables Y and Z in the model (2.4.1)
follow, respectively, an Inverse Gaussian distribution with parameter ν > 3, and a Gaussian dis-
tribution. Hence, Wω ∼ Skew−t(ν, µω, σω, γω) in which (µω, σω, γω) are as given in (2.4.3).
Furthermore, it is assumed that the investor preferences are described by an exponential utility, i.e.
U(x) = −e−ax, in which a > 0 is the risk-aversion coefficient. So either for their assumptions
on preferences or on the assets returns distribution, their setting is included in ours. The moment
generating function of Wω is well-known and given as

E
(
esWω

)
=
eµωs21− ν

2

Γ(ν
2
)

(
−ν(σ2

ωs
2 + 2sγω)

) ν
4 K ν

2

(√
−ν(σ2

ωs
2 + 2sγω)

)
, (2.5.1)

which only exists for s ∈ R such that 2sγω + σ2
ωs

2 6 0. The expected exponential utility
E (U(Wω)) is thus given as

E (U(Wω)) =
−e−µωa21− ν

2

Γω(ν
2
)

(
−ν(σ2

ωa
2 − 2aγω)

) ν
4 K ν

2

(√
−ν(σ2

ωa
2 − 2aγω)

)
, (2.5.2)

in which a is such that σ2
ωa

2 − 2aγω 6 0.
To find the optimal portfolio Birge and Chavez-Bedoya (2016) show the concavity of the objec-

tive function w.r.t the weights ωi. Sometimes, explicit solutions for the optimal vector of weights
ω∗ can be obtained. In contrast, we directly find the vector (µω

∗ , σω∗ , γω∗) in the set B∗ that yields
maximum expected utility and from this we infer the optimal vector of weights ω∗.

For the ease of exposition we further omit the subscripts ω and ω∗. Using the functional
relationship between µ and (σ, γ) in B∗ (see equation (2.4.7)), we obtain that the objective function
(2.5.2) can be written as a function of (σ,γ) only. We denote it by f (σ, γ) , where

f (σ, γ) =
−e
−a
(
W0(1+r)+

kγ
g
+

√
hg−k2
√

σ
2
g−γ2

g

)
21− ν

2

Γ(ν
2
)

(
−ν(σ2a2 − 2aγ)

) ν
4 K ν

2

(√
−ν(σ2a2 − 2aγ)

)
.

(2.5.3)
In Appendix 2.7.5, we show that this problem can be alternatively formulated as

max
(β,γ)∈D

q(β, γ), (2.5.4)
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where q(β, γ) is two-dimensional concave function and the domain D is given as

D=
{

(β, γ)
∣∣∣ γ2 − 2

g

a
γ + β 6 0, β > 0

}
.

The definition and properties of q(β, γ) are illustrated in Appendix 2.7.5. Once the optimal values

β∗ and γ∗ are found, we obtain the optimal value σ∗ =
√

β
∗
+γ
∗2

g
. The optimal values for µ∗ and

the weights ω∗i as functions of σ∗ and γ∗ follow from equation (2.4.14) and Proposition 2.4.4,
respectively. Hereafter, we illustrate that the solution obtained using the concave optimization
corresponds closely to the one that we would obtain using exhaustive search.

Specifically, we use the market conditions considered in Section 4.3 of Vanduffel and Yao
(2017), i.e., we consider the model X = (X1, X2, X3, X4, X5) ∼ Skew−t(ν,µ,Σ,γ) with pa-
rameters reported in Table 2.1. The initial wealth is W0 = 1, the risk-free rate is set r = 0.01/252
and ν = 9.557292. For the risk-aversion parameter a, we consider a = 2.

Table 2.1: Market parameters for five assets.

µi γi σ1i σ2i σ3i σ4i σ5i

X1 -0.00863 0.01488 0.000569 0.000103 0.000116 0.000086 0.000107
X2 -0.00181 0.00296 0.000103 0.000146 0.000061 0.000063 0.000071
X3 -0.00122 0.00537 0.000116 0.000061 0.000182 0.000070 0.000079
X4 0.00177 0.00035 0.000086 0.000063 0.000070 0.000118 0.000056
X5 0.00122 0.00547 0.000107 0.000071 0.000079 0.000056 0.000147

In order to find the maximum of the objective function f (σ, γ) given in equation (2.5.3) using
an exhaustive search approach, we first describe the set of feasible solutions.

From equation (2.5.3), a couple (σ, γ) that belongs to the domain of f (σ, γ) must satisfy γ >
aσ

2

2
. Furthermore, from the definition of B∗ in (2.4.7), we have the additional constraint that

γ ∈
[
σ k√

h
, σ
√
g
)

. Putting these conditions together, we obtain the set of feasible solutions S:

S =

{
(σ, γ) | σ ∈

(
0,

2
√
g

a

)
, γ ∈

[
max

{
aσ2

2
;σ

k√
h

}
, σ
√
g

)}
(2.5.5)

Observe that S is a bounded convex set in R2, which significantly eases the implementation of an
exhaustive search.

In Table 2.2 we display the optimal values for µ∗, σ∗ and γ∗ obtained using exhaustive search
and obtained using concave optimization. A two-dimensional grid is considered, with 2,000 values
for σ and for each σ we obtain 2,000 values for γ, i.e., a total number of 4,000,000 points to be
evaluated.

This example shows how the implementation of exhaustive search on a two-dimensional grid
merely requires the derivation of the set of feasible points. Therefore, this approach can in principle
be applied to any optimization problem within our framework, and this turns out to be particularly
useful when the objective function is not concave.
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Table 2.2: Optimal solutions under concave optimization and exhaustive search.

µω γω σω
Concave optimization 1.0015 0.17275 0.29492

Exhaustive search 1.0015 0.17274 0.29494

2.5.2 Mean-variance approximations
Levy and Markowitz (1979) and Markowitz (2014) provide some theoretical support for the ob-
servation that the optimal portfolio of an investor who maximizes expected utility can always be
approximated by a mean-variance efficient portfolio; see also Birge and Chavez-Bedoya (2016) for
some numerical evidence. Note, however, that under the assumption of a location-scale mixture
for the assets returns, the optimal portfolio is a combination of three funds and thus not two, like
in the case of mean-variance efficient portfolios. Hence, it is not obvious that one always find a
mean-variance efficient portfolio (two funds) that is very close to an EUT-optimal portfolio (three
funds).

Here, we show that under the assumption of a location-scale mixture for the asset returns there
may exist portfolios that are optimal for an exponential utility investor and that cannot be well
approximated by a mean-variance efficient portfolio. To measure the distance d

(
ω1,ω2

)
between

two portfolios ω1 and ω2, we use the Euclidean distance, i.e.,

d
(
ω1,ω2

)
=

√√√√ n∑
i=1

(
ω1
i − ω2

i

)2
(2.5.6)

In Appendix 2.7.6, we explain how for a given portfolio ω∗EU(a) that is optimal for an expected
utility maximizing investor with risk aversion coefficient a, one can determine the mean-variance
efficient portfolio ω∗MV (a) that is closest, i.e., such that d(ω∗EU(a),ω∗MV (a)) becomes minimum
among all mean-variance efficient portfolios ωMV .

Figure 2.2 displays, the behavior of this minimum distance, first, for a range of values for the
risk aversion parameter a, d(ω∗EU(a),ω∗MV (a))2 in Panel A and then as a function of the parameter
γ2 of the second risky asset in Panel B in the case of a = 1. Unless otherwise specified, all market
parameters are set as in Table 2.3.

Table 2.3: Market parameters for the two-dimensional market.

µ γ σ ρ ν
X1 0.05 -0.3 0.3 0.3 5
X2 0.08 0.7 0.5 0.3 5

Both panels in Figure 2.2 show that the minimum distance between the exponential utility
maximizing portfolio and a mean-variance efficient portfolio can be significant. This situation
occurs when the risk-aversion parameter a approaches 0 or when the parameter γ2 of the second
risk asset is big enough.

In Figures 2.3 and 2.4 we compare in more detail the composition of the EUT-optimal port-
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Figure 2.2: Minimum distance between the optimal exponential utility maximizing portfolio and the
closest mean-variance efficient portfolio as a function of the risk-aversion parameter a in Panel A
and as a function of γ2 in Panel B. In Panel A, for each value of a, we find the portfolio ω∗EU (a) that
is optimal for the exponential utility investor and determine the mean-variance portfolio ω∗MV (a) that has
minimum Euclidean distance with ω∗EU (a). In Panel B, for each value of the parameter γ2, we find the port-
folio ω∗EU (γ2) that is optimal for the exponential utility investor and determine the mean-variance portfolio
ω∗MV (γ2) that has minimum Euclidean distance with ω∗EU (γ2). The remaining market parameters are fixed
according to Table 2.3. In both panels, we plot the squared minimum distances.
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folio with the composition of the closest mean-variance efficient portfolio. On the one hand, the
portfolios exhibit similarities in that the decision of going long or short in an asset appears to be
the same in both cases. On the other hand, the amounts invested in the various assets are clearly
different and they are particularly different when the parameter a approaches zero or when γ2 is
increasing. This feature is consistent with the observations made in Figure 2.2. Note also that in
all considered cases the exponential utility maximizer appears to invest more in the risk-free asset
than the corresponding mean-variance maximizer.

All in all, the examples provided in this numerical study indicate that optimal portfolios for
expected utility investors cannot always be closely approximated by a mean-variance portfolio.
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Figure 2.3: Comparing the portfolios as the parameter a takes three values a = 0.3, a = 1 and a = 5.
Each optimal exponential utility portfolio is compared with the mean-variance portfolio that minimizes the
Euclidean distance (2.5.6). The market parameters are given in Table 2.3. The respective weights in the
risk-free asset and in the two risky assets are displayed as bars.
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Figure 2.4: Comparing the portfolios as γ2 takes three values γ2 = 0.3, γ2 = 0.6 and γ2 = 1. Each
optimal exponential utility portfolio is compared with the mean-variance portfolio that minimizes the Eu-
clidean distance (2.5.6). The other market parameters are given in Table 2.3 and the risk aversion parameter
is set to a = 5. The respective weights in the risk-free asset and in the two risky assets are displayed as bars.

1 2
risk-free

-1

-0.5

0

0.5

1

1.5
Exponential

Mean-Variance

1 2
risk-free

-1

-0.5

0

0.5

1

1.5
Exponential

Mean-Variance

1 2
risk-free

-1.5

-1

-0.5

0

0.5

1

1.5
Exponential

Mean-Variance

γ2 = 0.3 γ2 = 0.6 γ2 = 1

2.6 Final remarks
Under very weak conditions on the investor’s preferences we provide conditions on the multi-
variate distribution of asset returns that lead to two-fund or three-fund separation. Specifically, a
location-scale property of the multivariate distribution (elliptical distributions) leads to a two-fund
separation for all investors with law-invariant and increasing preferences whereas a weaker con-
ditional location-scale property implies three-fund separation. The latter condition is for instance
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satisfied by a multivariate hyperbolic distribution and is known to be fairly realistic for modeling
real-world asset returns. Thus, the assumptions made on the assets’returns distribution are the key
element to switch from a two-fund theorem to a three-fund theorem. The specificity of the objec-
tive function, which reflects the specific assumptions on the investor’s preferences, is only used to
select the optimal weights that are allocated to each of the two, respectively three funds.

Using this characterization of the optimal portfolio, it is then possible to significantly reduce
the complexity of finding an optimal portfolio, as only a one-dimensional optimization in the
case of two-fund separation (respectively a two-dimensional optimization in the case of three-fund
separation) is needed even in a market setting in which there are thousands of assets.

Using our theoretical approach and general characterization of optimal portfolio under very
general preferences, we are able to show that two-fund and three-fund theorems that have appeared
in the literature and that were derived under specific assumptions on the investor’s preferences
and on the market setting are special cases of our general characterization results. Finally, we
provide some evidence that the optimal portfolio of an expected utility maximizer cannot always be
approximated by a mean-variance efficient portfolio even though this was claimed in the literature
(e.g., Levy and Markowitz (1979) and Markowitz (2014)).
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2.7 Appendix

2.7.1 Well-posedness of Problem (2.4.9)

The condition γω ∈ (−√gσω,
√
gσω) is related to the well-posedness of the maximization problem

in (25). Using the value g defined in (2.4.8), this condition can be equivalently expressed as
follows:

γω ∈ (−√gσω,
√
gσω) ⇐⇒ σ2

ωg − γ2ω > 0

⇐⇒
(
ωTΣω

)(
γTΣ−1γ

)
>
(
ωTγ

)2
.

Since the matrix Σ is positive definite, using the extended Cauchy-Schwarz inequality, it can be
shown that (

ωTΣω
)(
γTΣ−1γ

)
>
(
ωTγ

)2
(2.7.1)

holds true for all ω. Therefore, once we fix σω = σ, γω must belong to the interval [−√gσ,√gσ]
otherwise the problem in (25) is ill-posed in that there are no portfolios ω satisfying both con-
straints σω = σ and γω = γ. With the condition γω ∈ (−√gσω,

√
gσω), we are excluding the

extreme cases γω = −√gσω and γω =
√
gσω. Let us consider the case γω =

√
gσω. Note that

γω =
√
gσω =⇒ ωTΣω =

γ2ω
g

=⇒
(
ωTΣω

)(
γTΣ−1γ

)
=
(
ωTγ

)
.2

Thus, the portfolios that satisfy γω =
√
gσω must satisfy also

(
ωTΣω

)(
γTΣ−1γ

)
=
(
ωTγ

)2
.

This last condition holds true if and only if there exists c ∈ R such that, ωT = cγTΣ−1. Therefore,
once we fix σω = σ, there exists only one portfolio ω such that the condition γω =

√
gσω is

satisfied and this portfolio is ωT = σ√
g
γTΣ−1. In a nutshell, the condition γω ∈ (−√gσω,

√
gσω)

is necessary for Problem (25) to be a true optimization problem.

2.7.2 Comparison with Mencía and Sentana (2009)

In this Appendix we show that set B∗, derived in Proposition 2.4.3, is a strict subset of the mean-
variance-skewness frontier derived in Mencía and Sentana (2009). First, we show that any portfolio
in B∗ is a solution of Problem (2.4.15). If (µ, σ, γ) ∈ B∗, we know that (µ, σ, γ) must be a solution
of Problem (2.4.9), namely

µ = max
ω

µω subject to σω = σ, γω = γ, (2.7.2)
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Additionally, in B∗ the partial derivative of µω with respect to γω is strictly negative and therefore

for all γ∗ > γ, µ > max
ω

µω subject to σω = σ, γω = γ∗. (2.7.3)

We want to show that (µ, σ, γ) solve a problem in the form of (2.4.15). It is clear that

γ 6 max
ω

γω subject to σω = σ, µω = µ. (2.7.4)

Now, assume
γ < γ′ = max

ω
γω subject to σω = σ, µω = µ. (2.7.5)

This implies that there exists a portfolio such that σω = σ, µω = µ and γω = γ′, with γ′ > γ.
Thus, it must be true that

∃γ∗ > γ such that µ 6 max
ω

µω subject to σω = σ, γω = γ∗. (2.7.6)

Note that (2.7.6) is a contradiction of (2.7.3). Hence, assumption (2.7.5) cannot be true and we
have that

γ = max
ω

γω subject to σω = σ, µω = µ. (2.7.7)

holds true for all portfolios (µ, σ, γ) ∈ B∗. Therefore, B∗ is a subset of the mean-variance efficient
frontier derived in Mencía and Sentana (2009). To conclude the proof, it is sufficient to show that
the mean-variance-skewness frontier of Mencía and Sentana (2009) contains some portfolios that
are not in B∗. In the proof of Proposition 2.4.3, we showed that not all solutions of Problem (2.4.9)
(set B1 in equation (2.4.11)) are also solutions of Problem (2.4.15). Since problems (2.4.9) and
(2.4.15) are specular5, with a similar argument one can easily check that not all the solutions of
Problem (2.4.15) are also solution of Problem (2.4.9) and therefore cannot be inB∗. The conclusion
is that B∗ is a strict subset of the mean-variance-skewness frontier derived in Mencía and Sentana
(2009).

2.7.3 SSD-investors optimal portfolios are in C∗

Recall that any objective function V (·) that satisfies Assumption 2.2.2 is also consistent with con-
vex order, i.e., given two portfolios W1 and W2 such that W1 ≺cx W2, then V (W1) > V (W2).
Hence, to prove that all SSD-optimal portfolios are in C∗ it is sufficient to prove that given two
portfolios with location-scale mixture property, same parameter µω and γω but different σω, then
the one with a lower σω is also lower in convex order, as stated in the next proposition.

Proposition 2.7.1. Let Z be a random variable with E(Z) = 0 and std(Z) = 1, and let Y > 0
a.s. be a random variable that is independent of Z. Let W1 and W2 be two random variables such
that W1

d
= µ+ Y γ +

√
Y σ1Z and W2

d
= µ+ Y γ +

√
Y σ2Z with µ ∈ R, γ ∈ R and 0 < σ1 < σ2.

5Problems (2.4.9) and (2.4.15) are specular in the sense that we can go from one problem to another simply by
switching γω with µω , or equivalently γ with µ− r1.
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Then, for all convex functions f ,

E(f(W1)) 6 E(f(W2)) (2.7.8)

Proof. First, observe that E(W1) = E(W2). For i = 1, 2 and for all y > 0, let us denote with Wiy

the random variable Wi|Y = y. The expected value and the standard deviation of Wiy, will be
denoted with my = µ+ yγ and δiy =

√
yσi, respectively. Under our hypothesis on the distribution

of W1 and W2, we can write

Wiy
d
= µ+ yγ +

√
yσiZ

d
= my + δiyZ

It is clear that for all convex functions f ,

E(f(W1)) = E(E(f(W1|Y = y))) 6 E(E(f(W2|Y = y))) = E(f(W2))

2.7.4 Uniqueness of σ2ω in B∗

Proof. From the definition of the set B∗ (Proposition 2.4.3) we can deduce that for any couple
(µω, γω), there exists a unique value of σ2

ω such that (µω, σω, γω) ∈ B∗. To see this point, we can
simply invert the functional relationship given in equation (2.4.7).

(µω, σω, γω) ∈ B∗ =⇒ µω = W0(1 + r) +
kγω
g

+

√
hg − k2

√
σ2
ωg − γ2ω

g

=⇒ (µω −W0(1 + r))g − kγω√
hg − k2

=

√
σ2
ωg − γ2ω

Thus

(µω, σω, γω) ∈ B∗ =⇒ ((µω −W0(1 + r))g − kγω)2

hg − k2
= σ2

ωg − γ2ω

=⇒

(
(µω −W0(1 + r))

√
g − kγω√

g

)2
hg − k2

+
γ2ω
g

= σ2
ω

=⇒

(
(W0(1 + r)− µω)

√
g + kγω√

g

)2
hg − k2

+
γ2ω
g

= σ2
ω.
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2.7.5 Proof of Concavity for Problem (2.5.4)

Proof. Considering f(σ, γ) in (2.5.3), we switch the parametrization from (σ,γ) to (β,γ), with
β = σ2g − γ2 and obtain the following portfolio optimization problem :

max
(β,γ)∈D

f(β, γ), (2.7.9)

in which f(β, γ) is given by

−e
−a
(
W0(1+r)+

kγ
g
+

√
hg−k2

√
β

g

)
21− ν

2

Γ(ν
2
)

(
−ν
(
β + γ2

g
a2 − 2aγ

)) ν
4

K ν
2

√−ν (β + γ2

g
a2 − 2aγ

) ,

and where the domain D is given as

D=
{

(β, γ)
∣∣∣ γ2 − 2

g

a
γ + β 6 0, β > 0

}
.

To find a solution to Problem (2.7.9), we will in a first step rewrite f(β, γ) as an easier-to-deal-with
function with the same maximum. To this end, consider the function

θ(y) =
− ln(−y) + ln(21− ν

2 )− ln(Γ(ν
2
))

a
−W0(1 + r).

Since θ(y) is increasing for y < 0, q(β, γ) := θ(f(β, γ)) has the same maximum and domain as
f(β, γ). Furthermore, q(β, γ) writes as

q(β, γ) = θ(f(β, γ)) =
kγ

g
+

√
hg − k2

√
β

g
− g(β, γ)

a
,

in which

g(β, γ) = ln

(−ν (β + γ2

g
a2 − 2aγ

)) ν
4

K ν
2

√−ν (β + γ2

g
a2 − 2aγ

) .

In a second step we prove that q(β, γ) is concave w.r.t. the variables (β, γ). We start by proving
that −g(β, γ) is concave. In this regard, note that −g(β, γ) = r(A(β, γ)), where

r(y) = − ln
(
y
ν
4K ν

2
(
√
y)
)
, A(β, γ) = −ν

(
β + γ2

g
a2 − 2aγ

)
.

In their Appendix C1, Birge and Chavez-Bedoya (2016) prove that r(y) is an increasing and
concave function. Furthermore, asA(β, γ) is concave as well,−g(β, γ) is concave. Finally, q(β, γ)
can be seen as a sum of concave functions, so it is concave itself.
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2.7.6 Minimum distance to mean-variance efficient portfolios
Proof. In our numerical study, each portfolio ω∗EU optimal for an exponential utility investor is
compared with the mean-variance portfolio that minimizes the Euclidean distance (2.5.6) with
ω∗EU . In this appendix, we illustrate how, given a generic n-dimensional vector x interpretable
as a benchmark portfolio, it is possible to determine the mean-variance efficient portfolio that has
minimum Euclidean distance with x.

Considering n risky assets whose returns have a positive definite covariance matrix ∆ and an
expected valuem, all mean-variance efficient portfolios can be written as

ω∗δ =
δ√
h

∆−1(m− r1).

Therefore, ω∗δ = δω∗1,∀δ > 0. Our aim is to solve the following problem:

min
δ

n∑
i=1

(xi − δω∗1i)
2

Let d(δ) be the function we aim to minimize, i.e. d(δ) =
∑n

i=1 (xi − δω∗1i)
2. The first and the

second-order derivatives of d(δ) are

d′(δ) =
n∑
i=1

−2ω∗1i (xi − δω∗1i) , d′′(δ) = 2
n∑
i=1

ω∗21i

Assuming ω∗1 6= 0, d(δ) is strictly convex. To find the minimum we look for the value of δ
such that d′(δ) = 0, namely

d′(δ) = 0 ⇐⇒
n∑
i=1

−2ω∗1i (xi − δω∗1i) = 0 ⇐⇒
n∑
i=1

ω∗21i δ =
n∑
i=1

ω∗i xi ⇐⇒ δ =

∑n
i=1 ω

∗
1ixi∑n

i=1 ω
∗2
1i

Hence,
∑n
i=1 ω

∗
1ixi∑n

i=1 ω
∗2
1i

ω∗1 is the mean-variance efficient portfolio with minimum Euclidean distance
with the vector x.



Chapter 3

The impact of correlation on
(Range)Value-at-Risk

3.1 Introduction
Insurance operations are based on the existence of risk diversification among risks and insurers’
capital requirements should therefore reflect the dependence and diversification effects among the
different risks they face. Regulatory capital frameworks, such as Basel III and Solvency II, ac-
knowledge diversification in that they make it possible for a company to employ correlations for
determining their capital. In a first step, the stand-alone capital requirements for the various risks
are determined and in a second step a correlation matrix is used to determine the aggregate capital
requirement hereby using the so-called square-root formula (Christiansen et al. (2012)).

Embrechts et al. (2002) clarify the role of copulas as a proper concept for reflecting dependence
among risks. Moreover, these authors warn that knowledge of correlations can give a false feeling
of security in that they may not well reflect the true dependence, and thus lead to an underesti-
mation of the true risk. This is because in general for a given set of correlations, several copulas
that preserve the correlations will exist and each of these copulas will give rise to one particular
loss distribution. Chernih et al. (2010) illustrate this feature in the context of credit portfolio risk
assessment. They build a portfolio model that uses exactly the same input parameters as indus-
try standard (Moody’s KMV) and show that the portfolio Value-at-Risk (VaR) - which translates
into the capital requirement - can be orders of magnitude higher than what is computed under the
industry standard. Such examples clearly demonstrate that model error is a real concern and that
it is useful to determine the worst-case model and best-case model, i.e., the models that yields
the highest resp. lowest possible value for the risk measure at hand given the information that is
available.

The problem of finding VaR bounds, i.e., the maximum and minimum VaR, when the marginal
distributions are fixed but no dependence information is assumed, has attracted a considerable in-
terest in the actuarial literature. In the case of two risks, this problem has been completely solved
in Makarov (1981) and Rüschendorf (1982). In arbitrary dimensions, it is more complicated and
a general solution is generally not available. Nevertheless, important results have been obtained

35
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in this direction. For identically distributed risks (homogeneous case), some explicit formulas for
the sharp VaR bounds have been proposed for instance in Wang and Wang (2011), Puccetti and
Rüschendorf (2013b) and Wang et al. (2013). In the inhomogeneous case, Puccetti and Rüschen-
dorf (2012) and Embrechts et al. (2013) developed the Rearrangement Algorithm1 (RA), which
turns out to be a highly efficient numerical procedure (Hofert et al. (2017), Bernard and McLeish
(2016)).

In any case, the bounds that are obtained in absence of using dependence information (un-
constrained bounds) are typically very wide, and this has motivated further research on VaR
bounds when some partial knowledge on the dependence structure (copula) is assumed (con-
strained bounds). Some first results in this direction were obtained in Embrechts et al. (2003)
and Embrechts and Puccetti (2006), where copula bounds are assumed to be known. Many authors
noticed that even when some knowledge on the copula is assumed, the risk of underestimating the
VaR at a high confidence level remains significant and attempted to quantify the level of under-
estimation as a function of dependence information. Among others, problems of this kind were
studied for instance in Bignozzi et al. (2015), where the authors showed that adding a positive de-
pendence restriction leaves the VaR upper bound considerably high. Bernard and Vanduffel (2015)
reached similar conclusions, assuming that the copula of interest is known only on a subset of its
domain.

In the banking and insurance industry, the dependence between two or more risks is often de-
scribed via the Pearson correlation. Therefore, it is of practical interest to study how bounds on
VaR and its generalization Range Value-at-Risk (RVaR) are affected when such dependence infor-
mation is available. With the same goal in mind, Bernard et al. (2017) obtained some (non sharp)
bounds on VaR using the variance of the sum as source of dependence information. Kaas et al.
(2009) have studied a similar problem as the one we consider in this paper and in Section 3.2.1
we compare their results with ours. Similarly to Kaas et al. (2009), our study should be consid-
ered as a pedagogic warning that the knowledge of one or more dependence measures does not
automatically translate into a lower worst-case VaR, with respect to the case when no dependence
information is available.

Our contributions can be summarized as follows. In Section 3.2, we study best-possible bounds
on VaR and Tail-Value-at-Risk (TVaR) for a sum of two risks in the presence of information about
a measure of association (dependence) with focus on three well-known dependence measures:
Spearman’s rho, Kendall’s tau and Pearson correlation. We show that when the dependence con-
straint takes value in a certain interval, which we can specify, then the constrained upper bounds
coincide with the unconstrained ones. A similar result holds for the case of lower bounds. For
probability levels used in risk management, however, the interval is wide for the case of upper
bounds and narrow for the case of lower bounds. Hence, using correlation information has typi-
cally no effect on the highest possible VaR whereas it can affect the lowest possible VaR.

In Section 3.3, we study the more general problem of finding the best-possible upper and lower
bounds for the Range-Value-at-Risk2 (RVaR) of the sum of n ∈ N risks, when the knowledge of

1The RA is not only a reference tool for assessing risk bounds numerically, further developments and generaliza-
tions of this algorithm have also been successfully applied in operations research to various allocation and synchro-
nization problems (Boudt et al. (2018), Cornilly et al. (2022))

2This risk measure is a generalization of TVaR and includes VaR and TVaR as special cases.
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the marginal distributions is assumed and some information on the average correlation is given. We
derive bounds that are in general not best-possible but provide a condition under which they are
best-possible. We also explicitly derive the best-possible constrained RVaR bounds for the case of
a sum of n > 3 uniformly distributed risks. As far as we know, this result is the first that provides
an explicit best-possible bound on RVaR for a general sum of n > 3 risks (uniformly distributed)
under a correlation constraint. Indeed, even in the unconstrained setting, obtaining best possible
bounds on (R)VaR is an open problem in general: explicit bounds are only available for small
portfolios (n = 2), some homogeneous portfolios, and for portfolios that are asymptotically large
(n → +∞); see also Puccetti and Rüschendorf (2013a) and Puccetti et al. (2013). Finally, we
discuss under which circumstances an inequality constraint on correlation does or does not contain
enough dependence information to affect the RVaR bounds.

Let us give the definitions of the risk measures considered in the present chapter. We denote
by VaRq(X) or by F−1X (·) the left inverse of the distribution function of a random variable (rv) X ,
i.e.,

VaRq(X) = inf{x ∈ R | FX(x) > q}, q ∈ (0, 1) .

We denote by VaR+
q (X) the right inverse, i.e.,

VaR+
q (X) = sup{x ∈ R | FX(x) 6 q}.

The Tail-Value-at-Risk (TVaR) at probability level q ∈ (0, 1) is defined as

TVaRq(X) =
1

1− q

∫ 1

q

VaRγ(X) dγ.

Finally, the Range-Value-at-Risk (RVaR) of X , introduced in Cont et al. (2010) is formally defined
as

RVaRq,q
′(X) =

1

q′ − q

∫ q
′

q

VaRγ(X)dγ, 0 < q < q′ < 1.

RVaR is a risk measure that encompasses VaR and TVaR as limiting cases. Specifically,

VaRq(X) = lim
r↗q

RVaRr,q(X) VaR+
q (X) = lim

r↘q
RVaRq,r(X) and TVaRq(X) = lim

q
′↗1

RVaRq,q
′(X) .

In this Chapter, we study risk bounds for sums S = X1 + ... + Xn assuming that in addition to
knowledge of the dfs Fi of the risks Xi, i = 1, ..., n, also some information on their dependence
(copula) is available. In this regard, we will assume that all dfs are continuous, as this allows to
exploit the one-to-one relationship between copulas and the joint distribution of X1, ..., Xn. In
what follows, we tacitly assume that all quantities we define exist.
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3.2 Risk bounds with two risks
In this section, we study VaR and TVaR bounds for a sum S = X1 + X2, X1 ∼ F1 and X2 ∼ F2

under a dependence constraint. Specifically, we consider the problems

%d := sup %(X1 +X2)

subject to Xj ∼ Fj, j = 1, 2

δ(X1, X2) = d,

(3.2.1)

and
%d := inf %(X1 +X2)

subject to Xj ∼ Fj, j = 1, 2

δ(X1, X2) = d.

(3.2.2)

Here, %(·) coincides with either VaR+
q , VaRq or with TVaRq, 0 < q < 1, and δ(X1, X2) is some

measure of association (dependence), i.e., a mapping that assigns a value to (X1, X2) with the
aim to reflect the strength of dependence between X1 and X2. In this regard, Sklar’s Theorem
states that the joint distribution of (X1, X2) is completely specified by its continuous marginal
distributions F1 and F2 and by the unique copula C such that (X1, X2) =d (F−11 (U), F−12 (V )),
U, V ∼ U(0, 1) and P (U 6 u, V 6 v) = C(u, v) for all (u, v) ∈ [0, 1]2. Thus, in what fol-
lows we may write δ(C,F1, F2) instead of δ(X1, X2). Note also that problems (3.2.1) and (3.2.2)
amount to constrained optimization problems over a set of copulas: Given the marginal distribu-
tions F1 and F2 of X1 and X2, respectively, we aim to determine the best possible bounds for
%(X1 + X2) by letting vary all copulas C under the constraint that the value of the dependence
measure δ(C,F1, F2) is equal to d. If we omit the dependence constraint in problems (3.2.1) or
(3.2.2) (but retain the condition that the marginal distribution functions F1 and F2 are known),
then we label these optimization problems as “unconstrained optimization problems” and denote
the unconstrained bounds by % and %, respectively.

As for the measure of dependence δ, we make the following assumption.

Assumption 3.2.1. For any given dfs F1 and F2 and any given copulas C1 and C2 it holds that:

• Let C1 be pointwise lower than C2, that is C1(u, v) 6 C2(u, v), ∀(u, v) ∈ [0, 1]2. Then,
δ(C1, F1, F2) 6 δ(C2, F1, F2).

• Let Cα = αC1 + (1 − α)C2, α ∈ [0, 1]. Then, the mapping α ∈ [0, 1] 7→ δ(Cα, F1, F2) is
continuous.

The first condition in Assumption 3.2.1 states that δ is consistent with pointwise (or concor-
dance) copula ordering. This condition is natural and satisfied by most measures of association.
In fact, it is typically considered as a desirable axiom that a measure of dependence should sat-
isfy, see also Nelsen (2010) for more details. This condition also implies that for any copula
C, δ(Ca, F1, F2) 6 δ(C,F1, F2) 6 δ(Cc, F1, F2) where Ca and Cc denote respectively the anti-
monotonic and the comonotonic copula, Ca(u, v) = max(u + v − 1, 0), Cc(u, v) = min(u, v),
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(u, v) ∈ [0, 1]2. The second condition in Assumption 3.2.1 is of a more technical nature. It
is satisfied by the following three popular measures of dependence: Pearson correlation “corr",
Spearman’s rho “ρ” and Kendall’s tau “τ”. These are defined as

• Pearson correlation, δ(·, ·) = corr(·, ·) : Let X1, X2 be two random variables. Then,

corr(X1, X2) :=
E((X1 − E(X1))(X2 − E(X2)))

std(X1)std(X2)
. (3.2.3)

• Spearman’s rho, δ(·, ·) = ρ(·, ·) : Let X1, X2 be two random variables with dfs F1 and F2,
respectively with a copula C. Then,

ρ(X1, X2) = corr(F1(X1), F2(X2)). (3.2.4)

Furthermore, the Spearman’s rho admits the following copula based representation,

ρ(X1, X2) = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3. (3.2.5)

• Kendall’s tau, δ(·, ·) = τ(·, ·) : Let (X1, X2) and (X ′1, X
′
2) be two independent and identi-

cally distributed random pairs with a copula C. Then,

τ(X1, X2) := P [(X1 −X ′1)(X2 −X ′2) > 0]− P [(X1 −X ′1)(X2 −X ′2) < 0]. (3.2.6)

Kendall’s tau thus reflects the probability of concordance between the variables X1 and X2

minus their probability of discordance. Furthermore, the Kendall’s tau admits the following
representation,

τ(X1, X2) := 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1. (3.2.7)

In particular, ρ(X1, X2) and τ(X1, X2) only depend on the copula C of (X1, X2) and we may thus
also write ρ(C) instead of ρ(X1, X2) and likewise τ(C) instead of τ(X1, X2). Throughout this
first section, we establish that when the risk is measured with VaR or TVaR there is a large range
of values for d for which the dependence constraint does not affect the maximum possible risk,
i.e., the constrained bound %d coincide with the unconstrained bound % in most cases of practical
interest.

3.2.1 Upper VaR bound
Let %(·) = VaR+

q , q ∈ (0, 1). We specifically denote the solution %d to the constrained upper bound
Problem (3.2.1) by VaRd

q whereas the solution % for the unconstrained case is denoted as VaRq.
Makarov (1981) and Rüschendorf (1982) solved the problem

sup P (X1 +X2 > t)

subject to Xj ∼ Fj, j = 1, 2,
(3.2.8)
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and from their analysis one obtains the following formula for VaRq:

VaRq = inf
u∈(q,1)

{F−11 (u) + F−12 (1 + q − u)}. (3.2.9)

Formula (3.2.9) shows that for the computation of VaRq one only needs to deal with the restrictions
of the quantile functions F−11 and F−12 to the upper part [q, 1] of their domain. It is then also clear
that for given dfs F1 and F2, there exist many distributions for (X1, X2) (and thus many copulas)
such that the upper bound in (3.2.9) is achieved. In fact, the formula suggests that we only need to
construct risks X1 ∼ F1 and X2 ∼ F2 such that when X1 is big (taking values higher than its VaR
at level q) also X2 is big (taking values higher than its VaR at level q) and, moreover, that the risks
are anti-monotonic in this scenario. To make this intuition clear, we define for each q ∈ (0, 1), the
set C (q) as the set of all copulas that are anti-monotonic on [q, 1]2, i.e.,

C (q) =
{

copula C | support of C on [q, 1]2 is {(u, v) | v = 1 + q − u, u ∈ [q, 1]}
}
, (3.2.10)

and we formulate the following proposition; a formal proof of which can be found in Embrechts
et al. (2013).

Proposition 3.2.1. Let q ∈ (0, 1) and let X1 ∼ F1 and X2 ∼ F2 having copula C ∈ C (q). It holds
that

VaR+
q (X1 +X2) = VaRq.

The unconstrained upper bound VaRq is thus attained whenever X1 ∼ F1, X2 ∼ F2 have a
copula C ∈ C (q). We show hereafter that there exists an interval [δmin, δmax] such that when the
dependence constraint d ∈ [δmin, δmax] the solution VaRd

q of the constrained problem in (3.2.1),
coincides with VaRq, i.e., the solution to the optimization problem in the absence of a dependence
constraint. In this regard, two copulas in C (q) are of particular interest. We denote them as Cq

min

and Cq
max and provide their expressions in equations (3.2.11) and (3.2.12), respectively.

Cq
min =


max(0, u+ v − q), ∀(u, v) ∈ [0, q]2

min(u, v), ∀(u, v) ∈ [0, q]× [q, 1] or ∈ [q, 1]× [0, q]

max(q, u+ v − 1), ∀(u, v) ∈ [q, 1]2,

(3.2.11)

and

Cq
max =

{
min(u, v), ∀(u, v) ∈ [0, 1]2 \ [q, 1]2

max(q, u+ v − 1), ∀(u, v) ∈ [q, 1]2.
(3.2.12)

The support of Cq
min is thus the set containing all pairs (u, v) ∈ [0, 1]2 such that{

v = q − u, ∀(u, v) ∈ [0, 1]2 \ [q, 1]2

v = 1 + q − u, ∀(u, v) ∈ [q, 1]2,
(3.2.13)
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and the support of Cq
max is the set containing all pairs (u, v) ∈ [0, 1]2 such that{

v = u, ∀(u, v) ∈ [0, 1]2 \ [q, 1]2

v = 1 + q − u, ∀(u, v) ∈ [q, 1]2.
(3.2.14)

In Figure 3.1, we display the supports of Cq
min and Cq

max. These copulas both reflect an anti-
monotonic dependence on [q, 1]2 whereas on [0, q]2 the dependence is either of a comonotonic
nature (case of Cq

max) or is anti-monotonic again (case of Cq
min). The next lemma will be useful

Figure 3.1: Supports of Cqmin (left panel) and Cqmax (right panel) for q = 0.6.
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for our analysis.

Lemma 3.2.2. Let q ∈ (0, 1) and C be a bivariate copula. Then,

C ∈ C (q) ⇐⇒ Cq
min(u, v) 6 C(u, v) 6 Cq

max(u, v), (3.2.15)

for all (u, v) ∈ [0, 1]2.

Lemma 3.2.2 states Cq
min and Cq

max are the pointwise lower and resp. upper copula bounds for
all copulas in C (q). Therefore, if δ is a dependence measure that satisfies assumption 3.2.1 and C
is a copula in the set C (q), then δ(Cq

min, F1, F2) 6 δ(C,F1, F2) 6 δ(Cq
max, F1, F2) holds true for

any pair of marginal distributions F1 and F2.

In the following theorem, we clarify the role of Cq
min and Cq

max in the computation of VaRd
q .

Theorem 3.2.3 (Constrained bounds that coincide with unconstrained ones). Let q ∈ (0, 1), X1 ∼
F1 and X2 ∼ F2, let δ be a measure of dependence that satisfies assumption 3.2.1. Let δmin =
δ(Cq

min, F1, F2) and δmax = δ(Cq
max, F1, F2). Then, for every d ∈ [δmin, δmax] it holds that

VaRdq = VaRq. (3.2.16)

Moreover, VaRdq is attainable i.e., for every d ∈ [δmin, δmax], there exists a copula C such that
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δ(C,F1, F2) = d, and for X1 ∼ F1, X2 ∼ F2 having copula C it holds that

VaR+
q (X1 +X2) = VaRdq . (3.2.17)

The proof of Theorem 3.2.3 is given in Appendix 3.5.2. From Theorem 3.2.3, we obtain
that the interval [δmin, δmax] describes a range of values for the dependence constraint δ such that
the dependence information coming from the constraint does not make it possible to reduce the
unconstrained upper bound VaRq. In this regard, note that the values of δmin and δmax will depend
on q ∈ (0, 1): when q increases, the upper interval [q, 1] shrinks implying that Cq

min and Cq
max tend

more and more to the anti-monotonic resp. comonotonic copula Ca and Cc. As the dependence
measures we consider are consistent with pointwise ordering on copulas (Assumption 3.2.1), the
interval [δmin, δmax] will become wider.

One could wonder what happens if one formulates problem (3.2.1) using VaR as the risk mea-
sure at hand instead of VaR+. Under some mild additional assumptions, we show in the next
proposition that also in this case the worst-case (unconstrained) VaR cannot be readily improved
by the knowledge of the dependence measure.

Proposition 3.2.4. Let q ∈ (0, 1), X1 ∼ F1 and X2 ∼ F2, let δ be a measure of dependence that
satisfies assumption 3.2.1. Assume that F−11 and F−12 are continuous on (0, 1) and that δ is such
that the mappings δmin : q ∈ (0, 1) 7→ δ(Cq

min, F1, F2) and δmax : q ∈ (0, 1) 7→ δ(Cq
max, F1, F2)

are continuous. Then, for every d ∈ (δmin, δmax) it holds that VaRq is the solution to

sup VaRq(X1 +X2)

subject to Xj ∼ Fj, j = 1, 2

δ(X1, X2) = d

(3.2.18)

Under the assumptions of Proposition 3.2.4, the upper bound on VaRq and VaR+
q for a sum of

two risks X1 and X2 with given marginal dfs F1 and F2 and a given value for their dependence
δ(X1, X2) coincides with the unconstrained upper bound, with the subtle difference that unlike in
the case of VaR+

q , the upper bound on VaRq is not attainable.

Constraint on Spearman’s Rho or Kendall’s Tau.

In this section, we apply Theorem 3.2.3 to the case in which the measure of dependence δ con-
sidered is specifically given as either Spearman’s rho (i.e., δ(·, ·) = ρ(·, ·)) or Kendall’s tau (i.e.,
δ(·, ·) = τ(·, ·)). We first formulate the following lemma.

Lemma 3.2.5 (Expressions for (ρmin, ρmax) and (τmin, τmax)). Let q ∈ (0, 1). It holds that

ρmin = ρ(Cq
min) = −6q (q − 1)− 1, ρmin = ρ(Cq

max) = 1− 2(1− q)3, (3.2.19)

and

τmin = τ(Cq
min) = −4q (q − 1)− 1, τmax = τ(Cq

max) = −2 (q − 1)2 + 1. (3.2.20)
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The proof of Lemma 3.2.5 is relegated to Appendix 3.5.4. By combining Theorem 3.2.3 and
Lemma 3.2.5 we obtain the following result.

Theorem 3.2.6 (Constrained bounds that coincide with unconstrained ones - case of δ(·, ·) = ρ(·, ·)
or δ(·, ·) = τ(·, ·)). Let q ∈ (0, 1), X1 ∼ F1 and X2 ∼ F2.

If δ(·, ·) = ρ(·, ·) and −6q (q − 1)− 1 6 d 6 1− 2(1− q)3, then

VaRdq = VaRq. (3.2.21)

If δ(·, ·) = τ(·, ·), and −4q (q − 1)− 1 6 d 6 −2 (q − 1)2 + 1, then

VaRdq = VaRq, (3.2.22)

and the bounds are attainable.

Figure 3.2: We display as a function of q the ranges [ρmin, ρmax] and [τmin, τmax] given in Lemma 3.2.5.
When the dependence measure ρ resp. τ takes value in [ρmin, ρmax] resp. [τmin, τmax], the constrained
upper bound VaRdq does not improve on the unconstrained upper bound VaRq.

0 0.2 0.4 0.6 0.8 1

q

-1

-0.5

0

0.5

1

max

min

0 0.2 0.4 0.6 0.8 1

q

-1

-0.5

0

0.5

1

max

min

Panel A: [ρmin, ρmax] w.r.t. q Panel B: [τmin, τmax] w.r.t. q

Figure 3.2 displays the intervals [ρmin, ρmax] and [τmin, τmax] for which the constrained upper
bound VaRd

q (d ∈ [ρmin, ρmax] resp. d ∈ [τmin, τmax]) does not improve the unconstrained upper
bound VaRq. We observe that for the levels of q usually considered in risk management (q > 0.95),
[ρmin, ρmax] and [τmin, τmax] almost cover the interval [−1, 1]. For instance, when q = 0.995, we
obtain that [ρmin, ρmax]=[−0.970, 1.000] and [τmin, τmax]=[−0.980, 1.000], and when q = 0.95, we
obtain that [ρmin, ρmax]=[−0.715, 1.000] and [τmin, τmax]=[−0.810, 0.995]. Thus, when q > 0.95,
it is, practically speaking, rather unlikely that dependence information (coming from Spearman’s
rho or Kendall’s tau) is such that the unconstrained VaR upper bound can be reduced.
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Constraint on Pearson Correlation

Theorem 3.2.6 can be extended to include the case of the Pearson correlation as source of de-
pendence information. An issue, however, is that, as compared to Spearman’s rho and Kendall’s
tau, the Pearson correlation also depends on the marginal distributions F1 and F2 of the risks
X1 and X2, implying that an explicit formula for corrmin = corr(Cq

min, F1, F2) and corrmax =
corr(Cq

max, F1, F2) is not always available. Nevertheless, corrmin and corrmax can always be ob-
tained via simulations. We illustrate this feature in Figure 3.3. In Panel A we consider F1 ∼
Gamma(2, 3) and F2 ∼ Lognormal(2, 1), whereas in Panel B we assume F1 ∼ Normal(2, 3)
and F2 ∼ Normal(2, 4). Note that as compared to the case of Spearman’s rho and Kendall’s
tau, the absolute bounds on the Pearson correlation are in general no longer equal to −1 resp. +1,
but depend on the marginal distributions F1 and F2 at hand: see Panel A in particular, where the
absolute bounds are equal to −0.565 resp. 0.905, that are the bounds obtained by computing the
correlation between X1 and X2 when the copula C is the comonotonic copula Cc (for the max-
imum correlation) and the anti-monotonic copula Ca (for the minimum correlation). We obtain
the same conclusion as in the previous section: when q > 0.95 and certainly when q > 0.995,
the knowledge of the Pearson correlation among two risks typically does not make it possible to
reduce the unconstrained VaR upper bound VaRq.

Figure 3.3: We display as a function of q the range [corrmin, corrmax]. In Panel A we consider
F1 ∼ Gamma(2, 3), F2 ∼ Lognormal(2, 1) and in Panel B we assume F1 ∼ Normal(2, 3), F2 ∼
Normal(2, 4). The solid black lines depict the absolute bounds on the Pearson correlation for the marginal
distributions at hand. When the Pearson correlation corr(·, ·) takes value in [corrmin, corrmax], the con-
strained upper bound VaRdq does not improve on the unconstrained upper bound VaRq.
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Comparison With Kaas et al. (2009)

Our main problem (3.2.1) was (among other results) also studied in Kaas et al. (2009). However,
their approach is very different from ours from a methodological point of view. In this section we
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aim to point out these methodological differences and the additional insights that we offer with
respect to their analysis.

We first start with a brief description of their methodology in the case where Spearman’s rho is
used as measure of dependence. Their problem then reads as

sup VaRq(X1 +X2)

subject to Xj ∼ Fj,

ρ(C) = d,

(3.2.23)

where d ∈ (0, 1) and we optimize over the set of copulas having a Spearman’s rho equal to d.
To deal with this problem, the general idea in Kaas et al. (2009) is that in a first step the

information coming from a measure of association may allow to improve the Fréchet-Hoeffding
bounds Ca and Cc on copulas (see Nelsen et al. (2004) and Nelsen and Úbeda Flores (2005) for
details). In a second step they use the improved copula bounds to improve the unconstrained VaR
bounds.

Specifically, in a first step they derive for each d ∈ (0, 1) a copula Cρ,d that is pointwise lower
than any copula having a Spearman’s rho equal to d, i.e. solving

Cρ,d = inf{C | C is a copula, ρ(C) = d}.

For the analytical expression of Cρ,d, see equation (7) in Kaas et al. (2009). However, observe
that the Spearman’s rho of Cρ,d is not equal to d in general. Second, they apply Theorem 3.1 in
Embrechts and Puccetti (2006) and Theorem 5 in Embrechts et al. (2005) to obtain the solution to
the following problem

sup VaRq(X1 +X2)

subject to Xj ∼ Fj,

C > CL.

(3.2.24)

in which they take CL = Cρ,d. Finally, they propose the solution of this problem as a bound for
VaR of a sum of two risks with given marginal distributions and when their Spearman’s correlation
is given.

Observe now that if a copula satisfies the constraint of problem (3.2.23), by construction it
satisfies also the constraint in problem (3.2.24) with CL = Cρ,d, but not vice versa (take for
instance the comonotonic copula, it satisfies the condition in (3.2.24) but not the one in (3.2.23)).
This of course implies that the supremum in (3.2.24) is in general higher than the supremum in
(3.2.23). Therefore, the constrained VaR upper bound proposed in Kaas et al. (2009) may not be a
solution for problem (3.2.23). This point is important in that Kaas et al. (2009) did not explicitly
discuss whether their VaR bounds are best-possible or not. Let us now illustrate that their bounds
are indeed not best-possible in general. Let ṼaR

d

q denote the solution of (3.2.23) and consider
the case where Xi ∼ U [0, 1], for i = 1, 2. Note that for marginal distributions that are standard
uniforms, Spearman’s rho and the Pearson correlation coincide. In particular, if Xi ∼ U [0, 1], for
i = 1, 2 a constraint ρ(C) = d on Spearman’s rho is equivalent to a constraint on the variance of
X1 +X2 in that var(X1 +X2) = 1+ρ(C)

6
. Thus, when ρ(C) = d, ṼaR

d

q has to satisfy the following
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inequality

ṼaR
d

q 6 min

{
1 +

√
1 + d

6

√
q

1− q
, VaRq

}
. (3.2.25)

The bound in (3.2.25) is built using the best-possible unconstrained upper bound VaRq and the
so-called Cantelli moment bound, that provides the bound on VaR for the sum X1 +X2 when their
mean and variance is known; see also Barrieu and Scandolo (2015) and Bernard et al. (2017) for
more details. Figure 3.4 then shows that whenever d < ρmin the bound proposed by Kaas et al.
(2009) is actually bigger than the bound in (3.2.25), i..e., bigger than ṼaR

d

q and thus is not best-
possible in general. As we have established that VaRq is the best possible constrained bound when
d ∈ [ρmin, ρmax] and as the optimal solution of their problem (3.2.24) is necessarily smaller than
VaRq, their bound thus matches VaRq whenever d ∈ [ρmin, ρmax].

Figure 3.4: Upper bounds on VaRq(S) when S = X1 + X2 with Xi ∼ U [0, 1], q = 0.6 and ρ(C) = d,
0 < d < 1. The dark blue line represents the bound proposed by Kaas et al. (2009) as a function of d The
light-blue line represents the upper bound defined in (3.2.25), also expressed as a function of d. The dashed
vertical lines represent ρmin and ρmax.
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As compared to Kaas et al. (2009), our analysis provides some additional insights. First,
under a mild assumption on the dependence measure δ(·, ·) we show how to obtain the interval
(δmin, δmax) having the property that if the dependence measure δ(·, ·) takes value in this interval,
the constrained VaR bound coincides with the unconstrained VaR upper bound. Moreover, while
this interval can always be determined using simulation, we establish this interval explicitly for the
case of Spearman’s ρ and Kendall’s τ . By contrast, the results provided in Kaas et al. (2009) do
not allow to determine such interval. We believe that the definition and the study of the interval
(δmin, δmax) provides a substantial contribution to the debate regarding the impact of a measure
of dependence constraint on VaR bounds, in that we show that for the probability levels usually
considered in practice and required by solvency regulations such as Solvency II and Basel III, i.e.,
q > 0.95, the interval (δmin, δmax) covers the range of values that the measure of dependence δ
may assume in practice, leaving outside only values of δ that are typically not observed in real-
world data. This feature is also illustrated in Figure 2, Figure 3 and Table 1. This result can be
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then used to effectively argue that the knowledge of a dependence measure does not guarantee a
reduction for the worst-case VaR scenario. Second, our analysis also deals with the case of the
Pearson correlation as source of dependence information, which is by far the most popular mea-
sure of dependence in the financial and insurance industry and which was not considered in Kaas
et al. (2009). In addition, we show that if one reformulates (3.2.23) in terms of VaR+ instead of
VaR, the problem becomes more tractable in that it is possible to obtain bounds that are not only
best-possible but also attainable (see Theorem 3.2.3).

Remark 3.2.1. Kaas et al. (2009) left an open question regarding VaR bounds for a sum of two
risks when both Kendall’s tau and Spearman’s rho are given. Solving an optimization problem with
more than one constraint, i.e., involving various measures of association, can be a challenging
task. Nonetheless, we show that Theorem 3.2.3 and Lemma 3.2.5 make it possible to solve the
problem

sup VaR+
q (X1 +X2)

subject to


Xj ∼ Fj, j = 1, 2
ρ(X1, X2) 6 ρ∗
τ(X1, X2) 6 τ ∗

corr(X1, X2) 6 c∗.

(3.2.26)

In Problem (3.2.26), we thus look for the maximum VaR+
q (S) given that the random vector (X1, X2)

simultaneously satisfies three constraints, one for each measure of association considered in our
analysis. Of course, having three constraints is more restrictive than having only one of them and
one could expect that this would automatically translate in a reduction of the maximum VaR+

q (S).
Nevertheless, it is clear that if ρ∗ > ρmin, τ ∗ > τmin and c∗ > corrmin, then the constraints
will be satisfied for the random pair (X1, X2) with copula Cq

min, X1 ∼ F1 and X2 ∼ F2. As
VaRq(X1 +X2) = VaRq we can thus conclude that the solution to Problem (3.2.26) is again VaRq.

We consider the case in which the risks have a Gamma resp. Lognormal distribution, i.e.,
X1 ∼ Gamma(2, 3) and X2 ∼ Lognormal(2, 1). Table 3.1 shows the values of δmin (Panel A)
and δmax (Panel B) for various probability levels and for the three measures of dependence we
studied (Pearson correlation, Kendall’s tau, Spearman’s rho). We underline that for q = 99.5%,
which is the probability level required by Solvency II for capital calculations, the maximum VaR is
impacted by the information on the dependence measure (and decreases) only if ρ∗ ∈ [−1,−0.970[,
τ ∗ ∈ [−1,−0.980[ or c∗ ∈ [−0.565,−0.321[.

What if d /∈ [δmin, δmax]?

So far, our analysis has focused on the definition and the study of the interval [δmin, δmax]. We
showed that, for the probability levels usually considered in risk management, i.e., q > 0.95, this
interval allows us to obtain the solution of problem (3.2.1) for most reasonable values that the de-
pendence measure δ can take (see Table 3.1, Figures 3.2 and 3.3). Nonetheless, a complete solution
of problem (3.2.1) indeed requires to study the VaR+ upper bound also for d /∈ [δmin, δmax]. This
problem seems mathematically very challenging, as illustrated in the following example. Fix q ∈
(0, 1), and consider problem (3.2.1) for X1, X2 ∼ U [0, 1], δ(·, ·) = ρ(·, ·), and d = 3

2
q(1− q) + 1.
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Table 3.1: Values of δmin (Panel A) and of δmax (Panel B).

q ρmin τmin corrmin
60.0% 0.440 -0.040 0.191
75.0% 0.125 -0.250 0.296
95.0% -0.715 -0.81 0.117
97.5% -0.854 -0.90 -0.036
99.0% -0.941 -0.960 -0.216
99.5% -0.970 -0.980 -0.321

q ρmax τmax corrmax
60.0% 0.872 0.680 0.256
75.0% 0.969 0.875 0.458
95.0% 0.999 0.995 0.779
97.5% 0.999 0.998 0.832
99.0% 0.999 0.999 0.871
99.5% 0.999 0.999 0.886

Panel A Panel B

Note that 3
2
q(1 − q) + 1 < ρmin holds for any q ∈ (0, 1). Let now us denote with Cq the copula

having the following support:{
v = lq − u, ∀u ∈

[
0, q

2

]
∪
[
1
2
, 1+q

2

]
v = uq − u, ∀u ∈

[
q
2
, 1
2

]
∪
[
1+q
2
, 1
] (3.2.27)

with lq = 1
2

+ q
2
, uq = 1+ q

2
. We start by showing that the equations in (3.2.27) describe the support

of a copula. In order to do so, we only need to show that the four segments described in (3.2.27)
do not overlap. This can be readily done by observing that when we fix q ∈ (0, 1), the following
conditions hold:

1. lq 6 1 6 uq,

2. uq − q
2

= 1,

3. lq − q
2

= uq − 1+q
2

,

4. lq − 1
2

= uq − 1,

5. lq − 1+q
2

= 0.

We conclude that (3.2.27) describes the support of a shuffle of Min copula, as illustrated in Figure
3.5. If (X1, X2) ∼ Cq, we obtain that X1 +X2 =d Sq with

Sq =

{
lq with probability q,
uq with probability 1− q.

(3.2.28)

Thus, S = X1 +X2 has a two-point distribution, taking value equal to lq with probability q and to
uq with probability 1− q. After simple calculations we obtain that if (X1, X2) ∼ Cq, than

VaR+
q (S) = uq = ṼaR

d

q < VaRd
q , (3.2.29)

where ṼaR
d

q is the upper bound given in (3.2.25), i.e., matching the Cantelli bound in this case.
Moreover, we observe that ρ(Cq) = 3

2
q(1 − q) + 1 = d and we have thus shown that the upper
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bound given in (3.2.25) can be attainable and thus best possible for some specific combinations of
q ∈ (0, 1) and d < δmin. That is, we obtain for a given q ∈ (0, 1) a best-possible bound for problem
(3.2.1) for the choice d = 3

2
q(1 − q) + 1 /∈ [δmin, δmax]. Unfortunately, it seems that a shuffle of

Min of the form Cq does not make it possible to solve problem (3.2.1) when d 6= 3
2
q(1 − q) + 1.

Indeed, when d 6= 3
2
q(1− q) + 1, a numerical analysis conducted using the RA algorithm (Puccetti

and Rüschendorf (2012)) suggests that the bound in (3.2.25) is no longer best-possible, and thus
that shuffles of Min in the form of Cq do not always lead to the best possible bound. This example
highlights that already in the simple case of uniform marginal distributions, if d /∈ [δmin, δmax],
the copula structure that solves problem (3.2.1) changes according to the specific combination of
q and d considered, indicating that the problem appears to be highly challenging.

Figure 3.5: The support of Cq, described in (3.2.27), for q = 0.6. The support consists in the four black
segments.
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3.2.2 Lower VaR bound
In Section 3.2.1 we have shown that for probability levels considered in risk management (i.e.,
q = 0.95 or higher), the availablity of correlation information typically does not make it possible
to reduce the unconstrained VaR bounds. Here we study whether this form of dependence infor-
mation impacts the VaR lower bound. We will show that dependence information typically makes
it possible to improve either the unconstrained lower bound (when the probability level q is high)
or the unconstrained upper bound (when the probability level q is low). Hence, correlation infor-
mation can reduce the dependence uncertainty spread (i.e., the difference between the best- and
the worst-case value of a risk measure, computed over all dependence structures compatible with
the available information). However, the improvement typically comes from the improvement of
the unconstrained lower bound (as in practice the probability level q is high).

Let %(·) = VaRq for q ∈ (0, 1) and denote the solution %d to the constrained lower bound
Problem (3.2.2) by VaRd

q . If we omit the dependence constraint we denote the solution as VaRq,
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i.e.,
VaRq = inf VaRq(X1 +X2)

subject to Xj ∼ Fj, j = 1, 2.
(3.2.30)

From the analysis in Makarov (1981) and Rüschendorf (1982) it follows that

VaRq = sup
u∈[0,q]

{F−11 (u) + F−12 (q − u)} (3.2.31)

The next lemma relates the constrained lower bound Problem (3.2.2) with the constrained upper
bound Problem (3.2.1). To establish this connection, it is useful to represent risks X1 and X2 as
X1 = F−1X1

(U) and X2 = F−1X2
(V ), respectively, where (U, V ) ∼ C and C is a copula.

Lemma 3.2.7. Let C be any arbitrary set of copulas. Then

min
(U,V )∼C∈C

VaRq
(
F−1X1

(U) + F−1X2
(V )
)

= max
(U,V )∼C∈C

VaR+
1−q
(
F−1−X1

(1− U) + F−1−X2
(1− V )

)
.

(3.2.32)

Proof. From lemma 1 in Dhaene et al. (2006),

VaRq

(
F−1X1

(U) + F−1X2
(V )
)

= −VaR+
1−q
(
−F−1X1

(U)− F−1X2
(V )
)

= −VaR+
1−q
(
F−1−X1

(1− U) + F−1−X2
(1− V )

)
,

from which the stated assertion follows.

In what follows, if (U, V ) ∼ C then we denote by C∗ the joint distribution function of (1 −
U, 1 − V ) and we say that C∗ is the associated copula of C. Specifically, C∗(u, v) = u + v −
1 + C(1 − u, 1 − v), (u, v) ∈ [0, 1]2. In this regard, note that when (X1, X2) has copula C
then (−X1,−X2) has copula C∗, see Lemma 2.3.1 in May and Scherer (2014) for a proof. The
following properties are easy to verify. If the copulas C1, C2 provide pointwise bounds for C, then
the same holds for the associated copulas, i.e., C1 6 C 6 C2 impliesC∗1 6 C∗ 6 C∗2 . Furthermore
(C∗)∗ = C. Finally, note that the support of (1−U, 1−V ) ∼ C∗ follows in a straightforward way
from the joint distribution C of (U, V ).

From Lemma 3.2.7 and its proof, VaRq(X1+X2), X1 ∼ F1, X2 ∼ F2 takes minimum value for
(X1, X2) having copulaC if and only if VaR+

1−q(−X1−X2) takes maximum value for (−X1,−X2)
having copula C∗, which holds whenever C∗ ∈ C (1− q) (Proposition 3.2.1). Hence, from Propo-
sition 3.2.1 and Lemma 3.2.2 it follows that as long as (X1, X2) is such that their associated copula
C∗ satisfies C1−q

min 6 C∗ 6 C1−q
max we find that VaRq(X1 + X2) is minimum. Let us now observe

that

C1−q
min 6 C∗ 6 C1−q

max ⇐⇒ (C1−q
min)∗ 6 (C∗)∗ 6 (C1−q

max)
∗ ⇐⇒ Cq

min 6 C 6 Cq,L
max,

where in the last step we used that the associated copula of C1−q
min is simply given by Cq

min and
where we denoted the associated copula for C1−q

max by Cq,L
max. In Figure 3.6 we illustrate how the

support of Cq,L
max (right panel) follows in a straightforward way from the support of C1−q

max.
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Figure 3.6: Support of C1−q
max (left panel) and its associated copula Cq,Lmax (right panel) for q = 0.6.
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The support of Cq,L
max is specifically given as the set (u, v) ∈ [0, 1]2 such that{

v = q − u, for u ∈ [0, q]

v = u, for u ∈ [q, 1].
(3.2.33)

and we readily obtain the following explicit expression for this copula:

Cq,L
max(u, v) =

{
max(0, u+ v − q), ∀(u, v) ∈ [0, q]2

min(u, v), ∀(u, v) ∈ [0, 1]2 \ [0, q]2
(3.2.34)

Figure 3.7: Support of Cqmin (left panel) and Cq,Lmax (right panel) for q = 0.6.
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The copulas Cq
min and Cq,L

max exhibit anti-monotonicity on [0, q] and are extreme in that using a
similar argument as in proof of Lemma 3.2.2 one can show all other copulas C that exhibit anti-
monotonicity on [0, q] satisfy Cq

min(u, v) 6 C(u, v) 6 Cq,L
max(u, v), (u, v) ∈ [0, 1]2. We denote
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these copulas by CL(q), i.e.,

CL(q) =
{

copula C | support of C on [0, q]2 is {(u, v) | v = q − u, u ∈ [0, q]}
}
. (3.2.35)

The following proposition is now proven.

Proposition 3.2.8. Let q ∈ (0, 1) and let X1 ∼ F1 and X2 ∼ F2 have a copula C ∈ CL(q). Then,
it holds that

VaRq(X1 +X2) = VaRq.

We can now also formulate the following theorem.

Theorem 3.2.9. Let q ∈ (0, 1), X1 ∼ F1 and X2 ∼ F2, let δ be a measure of dependence that
satisfies assumption 3.2.1. Let also δmin = δ(Cq

min, F1, F2) and δLmax = δ(Cq,L
max, F1, F2). For every

d ∈ [δmin, δ
L
max] it holds that

VaRdq = VaRq. (3.2.36)

Moreover, VaRdq is attainable, i.e., for every d ∈ [δmin, δ
L
max], there exists a copula C such that

δ(C,F1, F2) = d, and for X1 ∼ F1, X2 ∼ F2 having copula C it holds that

VaRq(X1 +X2) = VaRq. (3.2.37)

The proof of Theorem 3.2.9 is similar to the proof of Theorem 3.2.3 and thus omitted. Us-
ing Theorem 3.2.9 one can thus always obtain an interval for [δmin, δ

L
max] such that for any d ∈

[δmin, δ
L
max], it holds that VaRd

q = VaRq. In the next lemma, we provide these boundary values for
δmin and δLmax in explicit form for the case of Spearman’s rho and Kendall’s tau.

Lemma 3.2.10 (Expressions for (ρmin, ρ
L
max) and (τmin, τ

L
max)). Let q ∈ (0, 1). It holds that

ρmin = ρ(Cq
min) = −6q (q − 1)− 1, ρLmax = ρ(Cq,L

max) = 1− 2q3. (3.2.38)

and

τmin = τ(Cq
min) = −4q (q − 1)− 1, τLmax = τ(Cq,L

max) = 1− 2q2. (3.2.39)

As compared to the case of upper VaR+, for high probability levels typically used in risk
management, the interval [δmin, δ

L
max] is rather small as shown in Figures 3.8 and 3.9. Indeed,

when q is high, Cq
min and Cq,L

max are not very different (they only differ on [q, 1]), which implies that
δmin and δLmax are similar. By contrast, when q is low the interval becomes wider. In summary,
the information coming from the correlation constraint makes it possible to improve either the
unconstrained VaR upper bound or the unconstrained VaR lower bound and the latter is the typical
situation in risk management applications (as the probability level q used is usually high).

We point out that Lemma 3.2.8 only gives a sufficient condition for a copula of a pair (X1, X2)
(with given marginal distributions) such that the VaR of their sum is equal to the unconstrained
VaR lower bound : A full characterization of the copulas leading to the VaR lower bound is still an
open problem (the same assertion can be made for the VaR upper bound). This implies that there
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Figure 3.8: We display as a function of q the ranges [ρmin, ρ
L
max] and [τmin, τ

L
max]. When the dependence

measure takes value in [ρmin, ρ
L
max] resp. [τmin, τ

L
max], the constrained lower bound VaRdq does not improve

on the unconstrained lower bound VaRq.
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Figure 3.9: Illustration of Theorem 3.2.9 for the Pearson correlation. We display the range of values
[corrmin, corrLmax] as a function of q, which leads to no improvement in the lower VaR bound. Panel A
corresponds to X1 ∼ Gamma(2, 3) and X2 ∼ Lognormal(2, 1) and Panel B corresponds to two normal
distributions N(3, 2) and N(2, 4). In both Panels, the upper and lower black lines describe the highest and
the lowest levels of correlation attainable with the given marginal distributions, respectively.
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could exist copulas for (X1, X2) such that for the dependence constraint δ at hand, δ(X1, X2) /∈
[δmin, δ

L
max] but still leading to a VaR for the sum that coincides with the unconstrained VaR lower

bound. Nonetheless, we want to give an example of marginal distributions for which we know
this cannot hold. To this end, consider the case in which Xj ∼ U(0, 1) for j = 1, 2 and let
ρ(X1, X2) = d, d ∈ [0, 1]. As pointed out in section 3.2.1, it holds that

VaRd
q > max

{
1−

√
1 + d

6

√
1− q
q

,VaRq

}
. (3.2.40)

where the first quantity on the right hand side corresponds to the Cantelli moment lower bound for
VaR and note that VaRq = q.

Figure 3.10: Cantelli lower bound on VaRq(S) when S = X1 +X2 with Xi ∼ U(0, 1) and q = 0.6. The
light-blue line represents the Cantelli bound defined in (3.2.40), also expressed in terms of Spearman’s rho.
The horizontal black line describes the unconstrained VaR lower bound. The dashed vertical lines represent
ρmin and ρLmax.
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We plot this bound (right hand side of (3.2.40)) in Figure 3.10. Figure 3.10 shows that when
ρ < ρLmax the VaR of the sum X1 + X2 will be strictly greater than the unconstrained VaR lower
bound. However, it could still be possible that there exist copulas with ρ(X1, X2) > ρLmax such
that the VaR of the sum X1 +X2 coincides with the VaR unconstrained lower bound. Proposition
3.2.11 shows however that this is not possible in the case of standard uniformly distributed risks.

Proposition 3.2.11. Let q ∈ (0, 1) and let Xi ∼ U(0, 1) for i = 1, 2 with a copula C. Then,

VaRq(X1 +X2) = VaRq ⇐⇒ C ∈ C L(q). (3.2.41)

The proof of Proposition 3.2.11 is given in Appendix 3.5.5.



3.2. Risk bounds with two risks 55

3.2.3 Upper TVaR bound

In this section we extend the results obtained for the VaR upper bound to the case of TVaR. Hence,
let %(·) = TVaRq for q ∈ (0, 1) and denote the solution %d to the constrained upper bound problem
(3.2.1) by TVaRd

q whereas the solution % for the unconstrained case is denoted as TVaRq.
It is well-known that TVaR is a subadditive risk measure, i.e., for every random pair (X1, X2)

it holds that
TVaRq(X1 +X2) 6 TVaRq(X1) + TVaRq(X2), (3.2.42)

and moreover that equality is obtained if X1 and X2 are comonotonic. Hence, we obtain the
following formula for TVaRq as solution to the unconstrained version of Problem (3.2.1),

TVaRq = TVaRq(X1) + TVaRq(X2)

and TVaRq is attained if X1 ∼ F1 and X2 ∼ F2 are comonotonic. Nonetheless, comonotonicity is
a sufficient but not necessary condition to maximize the TVaR. Indeed, Wang and Zikitis (2020b)
obtained a complete characterization of the dependence structures between X1 ∼ F1 and X2 ∼ F2

such that TVaRq(X1 + X2) = TVaRq. In this regard, the notion of q-concentrated random pairs
(X1, X2) turns out to be useful (Wang and Zikitis (2020b)).

Definition 3.2.12. A random pair (X1, X2) is said to be q-concentrated if and only if

AqX1
= AqX2

a.s. (3.2.43)

where AqXi = {ω ∈ Ω | Xi(ω) > VaRq(Xi)}, i = 1, 2.

Thus, q-concentrated random pairs (X1, X2) are such that if one of the two random variables
takes a high value (i.e., higher than its VaR at level q), then also the other random variable takes
a high value (i.e., also higher than its VaR at level q). Wang and Zikitis (2020b) described this
condition by saying that they share a q-tail event. In what follows, we use an equivalent formulation
of q-concentration, expressed in terms of copulas.

Lemma 3.2.13. Let q ∈ (0, 1), and (X1, X2) be a random vector with a copula C.

(X1, X2) is q-concentrated ⇐⇒ C(q, q) = q. (3.2.44)

Proof. This is a special case of Theorem 3 in Wang and Zikitis (2020b).

Lemma 3.2.14. Let q ∈ (0, 1), and (X1, X2) is a random vector having a copula C. Then,

TVaRq(X1 +X2) = TVaRq(X1) + TVaRq(X2) ⇐⇒ C(q, q) = q. (3.2.45)

We denote CTVaR(q), q ∈ (0, 1), as the set of copulas maximizing the TVaRq(X1 + X2) under
the constraint X1 ∼ F1 and X2 ∼ F2. Lemma 3.2.13 implies that

CTVaR(q) = {copula C | C(q, q) = q}. (3.2.46)



56 The impact of correlation on (Range)Value-at-Risk

Remark 3.2.2. The condition C(q, q) = q can be alternatively formulated using the concept of
C-volume3, denoted by VC . Specifically, the condition C(q, q) = q is equivalent to each of the
three following properties expressed in terms of VC .

VC ([0, q]× [q, 1]) = 0, VC ([q, 1]× [0, q]) = 0 or VC ([q, 1]× [q, 1]) = 1− q. (3.2.47)

These equivalences are straightforward to prove. For instance, observe thatC(q, q)+VC ([0, q]× [q, 1]) =
C(q, 1) = q holds true for every copula. Consequently, VC ([0, q]× [q, 1]) = 0 ⇐⇒ C(q, q) = q.
A graphical illustration is provided in Figure 3.11.

Lemma 3.2.15. Let q ∈ (0, 1). The set CTV aR(q) strictly contains C (q) and is convex.

The proof of Lemma 3.2.15 is given in Appendix 3.5.6. From Lemma 3.2.15, C (q) can thus be
seen as the subset of CTV aR(q) containing those copulas that exhibit an anti-monotonic dependence
in the upper q-quadrant [q, 1]2 of their support. We are now ready for our main result concerning

Figure 3.11: This figure depicts the structure of copulas C ∈ CTV aR(q). We consider the case q = 0.8, but
other cases are similar. As stated in (3.2.47), the C-volumes of the two white rectangles [0, 0.8] × [0.8, 1]
and [0.8, 1]× [0, 0.8] must be 0. Therefore, a copula is in CTV aR(0.8) if and only if its support is contained
in the two light-blue squares.
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the solution to Problem (3.2.1) for %(·) = TVaRq. Recall that Cc denotes the comonotonic copula
and that the definition of Cq

min is given in (3.2.11).

Theorem 3.2.16. Given q ∈ (0, 1), X1 ∼ F1 and X2 ∼ F2, let δ be a measure of dependence
that satisfies assumption 3.2.1. Let also δmin = δ(Cq

min, F1, F2) and δc = δ(Cc, F1, F2). For every
d ∈ [δmin, δ

c] it holds that
TVaRdq = TVaRq. (3.2.48)

3The C-volume of a rectangle [x1, x2]× [y1, y2] with x1 6 x2 and y1 6 y2 is defined as VC ([x1, x2]× [y1, y2]) =
C(x2, y2)− C(x2, y1)− C(x1, y2) + C(x1, y1). See Definition 2.1.1 in Nelsen (2010) for further details.
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Moreover, there exists a copula C such that δ(C,F1, F2) = d and TVaRq(X1 + X2) = TVaRq if
and only if d ∈ [δmin, δ

c].

The proof of Theorem 3.2.16 is given in Appendix 3.5.7. The role of Theorem 3.2.16 in the
analysis of the constrained TVaR problem is similar to the role of Theorem 3.2.3 for dealing with
the constrained VaR problem. The interval [δmin, δ

c] describes a range of values for d such that the
dependence information coming from the constraint does not make it possible to reduce the uncon-
strained upper bound TVaRq. A slight difference between Theorem 3.2.16 and Theorem 3.2.3 is
that in the TVaR case the unconstrained upper bound can be achieved if and only if d ∈ [δmin, δ

c],
while we have only a sufficient condition for the VaR+ upper bound achievement. This is due to
the fact that a complete characterization of the dependence structure maximizing TVaRq(X1 +X2)
under the constraintX1 ∼ F1 andX2 ∼ F2 is available in the literature (Wang and Zikitis (2020b)),
while this is not the case for VaR+

q (X1 +X2).
It is interesting to notice that for each given q ∈ (0, 1), the interval [δmin, δ

c] is bigger than
[δmin, δmax]. This is a direct consequence of the well-known fact that every copula is pointwise
dominated by the comonotonic copula. As all our measures of dependence that we consider are
consistent with pointwise ordering on copulas (see Assumption 3.2.1), it thus follows that δmax <
δc and moreover that ρc = τ c = 1, q ∈ (0, 1). We also point out that even though the length of the
interval [δmin, δmax] tends to zero as q approaches zero (see also Figure 3.2), the interval [δmin, δ

c]
can be wide even in this case. Take for instance the case of Spearman’s rho: ρmin (equation
(3.2.19)) goes to -1 when q approaches 0 but ρc is always equal to 1.

It is not clear how to generalize the results for the constrained upper TVaR to the case of the
constrained lower TVaR and we leave this problem for further research.

3.3 RVaR risk bounds with n risks
In this section, we study the RVaR of a portfolio of n risks Xi ∼ Fi under correlation information.
Specifically, we use a weighted average of pairwise Pearson correlations corr(Xi, Xj) as the source
of dependence information.

Definition 3.3.1. Given a random vector X = (X1, ..., Xn) , the average correlation of X, acorr (X),
is defined as

acorr (X) =

∑
i 6=j corr(Xi, Xj)std(Xi)std(Xj)∑n

i 6=j std(Xi)std(Xj)
. (3.3.1)

Note that for n = 2, the average correlation acorr(X1, X2) coincides with the pairwise Pearson
correlation corr(X1, X2). Furthermore, as the marginal distributions Fi of the Xi are given, the
variance of the sum, var(X1 + ...+Xn), and the average correlation acorr(X) are directly related:

acorr(X) =
var(S)−

∑n
i=1 var(Xi)∑n

i 6=j std(Xi)std(Xj)
. (3.3.2)

Knowledge of the average correlation among the Xi (equivalently, knowledge of the variance of
the portfolio sum X1 + ... + Xn is a fairly reasonable assumption that can be made. By contrast,



58 The impact of correlation on (Range)Value-at-Risk

knowledge of all pairwise correlations among the risks is quite ambitious. For instance, in a credit
risk context, knowledge of pairwise correlations is essentially equivalent to knowledge of all single
and pairwise default probabilities among obligors, which is difficult to achieve, as (joint) default
events are scarce events. The average correlation acorr(X) reaches its highest value when the
variance of X1 + ... + Xn is maximum, that is when the risks Xi are comonotonic. As for the
lowest possible value of acorr(X), it is clear that acorr(X) is always higher than −

∑n
i=1 var(Xi)∑n

i6=j std(Xi)std(Xj)
,

as this corresponds to the case in which var(X1 + ... + Xn) = 0. In general, it is however not
always possible to construct a dependence among risks Xi ∼ Fi such that their sum has zero
variance (consider for example the case in which the marginal distributions Fi are bounded to the
left but unbounded to the right). In fact, the problem of finding the minimum variance of a sum
for given marginal distributions of its components is generally unresolved4 The constrained risk
bounds problems we study can be formulated as follows.

RVaRd
q,q
′ := sup RVaRq,q

′(S)

subject to Xj ∼ Fj,

acorr (X1, ..., Xn) 6 d,

(3.3.3)

RVaRd
q,q
′ := inf RVaRq,q

′(S)

subject to Xj ∼ Fj,

acorr (X1, ..., Xn) 6 d,

(3.3.4)

When we omit the dependence constraint, we specifically denote the best-possible bounds by
RVaRq,q

′ and RVaRq,q
′ , respectively. In what follows, we tacitly assume that these problems are

well-posed in that the constraint (i.e., the value for d) on the average correlation constraint is high
enough.

Given the one-to-one relationship between acorr(X1, ..., Xn) and var(X1 + ...+Xn), problems
(3.3.3) and (3.3.4) amount to finding RVaR bounds for portfolio sums under knowledge of their
variance as well as the marginal distributions of its components and we thus merely generalize the
problems on VaR bounds studied by Bernard et al. (2017) to the case of RVaR. Bounds for RVaR
for portfolios under knowledge of the components’ marginal distributions have not yet received a
lot of attention in the literature and formulas for RVaRd

q,q
′ and RVaRd

q,q
′ are missing.5 We first study

the unconstrained case and the study of the constrained bounds follows.
In our analysis we will use the Left Tail-Value-at-Risk (LTVaR) at probability level q ∈ (0, 1),

defined by

LTVaRq(X) =
1

q

∫ q

0

VaRγ(X) dγ,

and note that E(X) = qLTVaRq(X) + (1− q)TVaRq(X).

4See e.g., Puccetti and Wang (2015b) and the references therein for a detailed study. A possible approach to
estimate the minimum achievable variance is the RA algorithm (Puccetti and Rüschendorf (2012)).

5Embrechts et al. (2018) obtained some inequality results that yield upper bounds for RVaR of the sum under sole
knwowledge of marginal distributions of the sum’s components; see also Remark 3.3.1.



3.3. RVaR risk bounds with n risks 59

3.3.1 Unconstrained RVaR bounds

In order to study the unconstrained bounds RVaRq,q
′ and RVaRq,q

′ , we first recall the concept of
(tail) mixability (see Wang and Wang (2011), Wang et al. (2013) and Embrechts et al. (2013))
which is known to play a central role in many risk aggregation problems. Consider n random
variables X1, ..., Xn and S =

∑n
i=1Xi. Given c ∈ R and q ∈ (0, 1), we say that the X1, ..., Xn are

q-upper tail mixing with mixing constant c, if

P (S = c |S > VaR+
q (S)) = 1.

Analogously, we say that the X1, ..., Xn are q-lower tail mixing with mixing constant c, if

P
(
S = c |S 6 VaRq(S)

)
= 1.

In what follows, for the ease of presentation we will also say that in these instances S is mixing in
the upper q-part of its distribution resp. lower q-part of its distribution with mixing constant c. Ob-
serve that given a set of random variablesX1, ..., Xn, the existence and the analytical expression of
a copula among the Xi leading to the mixability of their sum depend on the marginal distributions
Fi of the Xi at hand. For instance, when one deals with two risks that are uniformly distributed on
the interval [0, 1], their sum is mixing in the upper q-part of its distribution for any copula in the
set C (q) (defined in (3.2.10)). Such property however cannot hold for instance if the two random
risks are lognormally distributed.

In the special case in which RVaR reduces to VaR, formulas for RVaRq,q
′ and RVaRq,q

′ exist
in the homogeneous setting (i.e., all Fi are identical); see Embrechts and Puccetti (2006), Wang
et al. (2013) and Puccetti and Rüschendorf (2013b) whereas in the heterogeneous set-up algorithms
such as the Rearrangement Algorithm (RA) can be used to obtain approximations of good quality.
Furthermore, in the special case of TVaR bounds, it is well-known that the upper bound writes as
the sum of the TVaRs of the components and is attained under a comonotonic dependence among
the risks.

Proposition 3.3.2 (RVaR bounds with given marginals). Let 0 < q < q′ < 1. It holds that

RVaRq,q′ > A(q′) :=
n∑
i=1

LTVaRq′(Xi), (3.3.5)

RVaRq,q′ 6 B(q) :=
n∑
i=1

TVaRq(Xi). (3.3.6)

Furthermore, the lower bound A(q′) is attained if and only if there exists a copula such that S
is mixing in the lower q′-part of its distribution with mixing constant A(q′). The upper bound
B(q) is attained if and only if there exists a copula such that S is mixing in the upper q-part of its
distribution with mixing constant B(q).
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Proof. For any set of random variables X1, ..., Xn with sum S = X1 + ...+Xn it holds that

VaR+
q (S) 6 RVaRq,q

′(S) 6 TVaRq(S) 6
n∑
i=1

TVaRq(Xi) = B(q), (3.3.7)

and in a similar way

A(q′) =
n∑
i=1

LTVaRq
′(Xi) 6 LTVaRq

′(S) 6 RVaRq,q
′(S) 6 VaRq

′(S). (3.3.8)

From Theorems 1 and 2 in Bernard et al. (2017), we know that the mixability of S in the upper q-
part of its distribution with mixing constant B(q) is equivalent to VaR+

q (S) = B(q) and that when
S is mixing in the lower q′-part of its distribution, with mixing constant A(q′) then VaRq

′(S) =

A(q′). Hence, from (3.3.7) and (3.3.8),

VaR+
q (S) = B(q) =⇒ RVaRq,q

′(S) = B(q), (3.3.9)

VaRq
′(S) = A(q′) =⇒ RVaRq,q

′(S) = A(q′). (3.3.10)

We only need to show the opposite implications, i.e., that RVaRq,q
′(S) = B(q) =⇒ VaR+

q (S) =

B(q) and RVaRq,q
′(S) = A(q′) =⇒ VaRq

′(S) = A(q′). To this end, we proceed by contradic-
tion. Let us thus assume that S is such that RVaRq,q

′(S) = B(q) and VaR+
q (S) < B(q). These two

conditions together imply VaR+

q
′(S) > B(q), q′ < q∗ < 1. It is easy to see that RVaRq,q

∗(S) can be
expressed as follows:

RVaRq,q
∗(S) =

q′ − q
q∗ − q

RVaRq,q
′(S) +

q∗ − q′

q∗ − q
RVaRq

′
,q
∗(S). (3.3.11)

Thus, RVaRq,q
∗(S) can be seen as a mixture of RVaRq,q

′(S) and RVaRq
′
,q
∗(S),with weights q

′−q
q
∗−q >

0 and q
∗−q′

q
∗−q > 0 that satisfy q

′−q
q
∗−q + q

∗−q′

q
∗−q = 1. Note VaR+

q
′(S) > B(q) =⇒ RVaRq

′
,q
∗(S) > B(q).

This last inequality together with the assumption RVaRq,q
′(S) = B(q) and the relation (3.3.11)

implies RVaRq,q
∗(S) > B(q) =

∑n
i=1 TVaRq(Xi), which is a contradiction of (3.3.7).

Hence, we conclude that S cannot be such that RVaRq,q
′(S) = B(q) and VaR+

q (S) < B(q)

holds simultaneously. Since it must hold that either VaR+
q (S) < B(q) or VaR+

q (S) = B(q), we
deduce that

RVaRq,q
′(S) = B(q) =⇒ VaR+

q (S) = B(q). (3.3.12)

Putting together (3.3.9) and (3.3.12), we obtain that RVaRq,q
′(S) = B(q) ⇐⇒ VaR+

q (S) =
B(q) ⇐⇒ S is mixing in the upper q-part of its distribution with mixing constant B(q). The
proof for the lower bound A(q′) is similar and thus we omit it.

From Proposition 3.3.2 and its proof, we obtain that if there exists a copula such that S is mix-
ing in the q-upper part of its distributions the worst-case VaR+

q , TVaRq and RVaRq,q
′ coincide, i.e.,
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VaR+
q = RVaRq,q

′ = TVaRq and similar for lower bounds. As pointed out in Bernard et al. (2017),
tail mixability is a strong assumption when one is dealing with a small number of risks. Nonethe-
less, when the portfolio size is large enough, there is numerical evidence that tail mixability can
approximately be obtained.

Remark 3.3.1 (Comparison with Embrechts et al. (2018)). Embrechts et al. (2018) proved that
RVaR satisfies a special form of subadditivity. With our parametrization, Theorem 1 in their paper
becomes

RVaRq,q′ (S) 6
n∑
i=1

RVaRq(n),q′(n) (Xi) (3.3.13)

where q(n) = 1 − 1−q′

n
− q′ + q and q′(n) = 1 − 1−q′

n
. For all n ∈ N, q(n) > q and q′(n) > q′.

Embrechts et al. (2018) did not discuss whether the bound (3.3.13) was best possible. Both bounds∑n
i=1 RVaRq(n),q′(n) (Xi) and

∑n
i=1 TVaRq (Xi) depend solely on the marginal distributions and it

is not clear which one is higher in general. However, the bound derived in Proposition 3.3.2,
for large portfolios, is lower than the one proposed in Embrechts et al. (2018), regardless of the
marginal distributions considered. Indeed, when n −→ +∞, then q′(n) −→ 1 and q(n) −→ 1−
q′+ q > q. Hence, for large portfolios the upper bound in Proposition 3.3.2 offers an improvement
with respect to the one proposed in Theorem 1 of Embrechts et al. (2018). In particular, our bound
B(q) for RVaRq,q′ is asymptotically smaller than the one derived in Embrechts et al. (2018) as

lim
n→+∞

∑n
i=1 RVaRq(n),q′(n) (Xi)∑n

i=1 TVaRq (Xi)
= lim

n→+∞

∑n
i=1 TVaR1−q′+q (Xi)∑n

i=1 TVaRq (Xi)
> 1.

3.3.2 Constrained RVaR bounds

We focus now on upper and lower bounds on RVaR for a portfolio when the marginal distributions
Fi of the components Xi are known and their average correlation acorr(X1, ..., Xn) is lower than
a certain value. To this end, it is useful to recall RVaR bounds under the sole knowledge of the
portfolio’s mean and variance.

Hence, we denote by Dp (a, b), p ∈ (0, 1), a two-point distribution having mass points values
equal to a, b ∈ R, with probability p and 1 − p, respectively. Furthermore, for each µ ∈ R and
s2 > 0, let V (µ, s2) be the set of random variables having mean µ and variance s2, i.e.,

V (µ, s2) =
{
X : E(X) = µ, var(X) = s2

}
. (3.3.14)

Lemma 3.3.3 (Moment bounds). Let X ∈ V (µ, s2) with µ ∈ R and s2 > 0, and let 0 < q < q′ <
1. Then,

µ− s

√
1− q′

q′
6 RVaRq,q′(X) 6 µ+ s

√
q

1− q
. (3.3.15)

Proof. See Li et al. (2018) for the upper bound and Bernard et al. (2020b) for the lower bound.
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The stated lower bound in Lemma 3.3.3 is attained for X ∈ V (µ, s2) that is distributed with

Dq
′

(
µ− s

√
1−q′

q
′ , µ+ s

√
q
′

1−q′

)
and the upper bound is attained when X ∈ V (µ, s2) has distribu-

tion Dq

(
µ− s

√
1−q
q
, µ+ s

√
q

1−q

)
.

Let Xi ∼ Fi, S = X1 + ... + Xn, µ = E(S). For any p ∈ (0, 1) and d ∈ R, we define the
quantities

l(p) := max

µ−
√√√√d

n∑
i 6=j

std(Xi)std(Xj) +
n∑
i=1

var(Xi)

√
1− p
p

,A(p)

 ,

u(p) := min

µ+

√√√√d
n∑
i 6=j

std(Xi)std(Xj) +
n∑
i=1

var(Xi)

√
p

1− p
,B(p)

 ,

c(p) :=
p (A(p)− µ)2 + (1− p) (B(p)− µ)2 −

∑n
i=1 var(Xi)∑n

i 6=j std(Xi)std(Xj)
.

(3.3.16)

and note that the expressions for B(p) and A(p) were given in (3.3.5) and (3.3.6). When p = 1,
we set l(1) = µ, u(1) = µ.

Proposition 3.3.4 (RVaR bounds with given marginals and the average correlation constraint). Let
0 < q < q′ < 1. It holds that

RVaRd
q,q
′ > l(q′). (3.3.17)

RVaRdq,q′ 6 u(q). (3.3.18)

Furthermore, the equality RVaRd
q,q
′ = l(q′) holds if there exists a copula such that acorr(X) 6 d

and S is mixing in the lower q′-part of its distribution with mixing constant l(q′). The equality
RVaRdq,q′ = u(q) holds if there exists a copula such that acorr(X) 6 d and S is mixing in the upper
q-part of its distribution with mixing constant u(q).

The proof is given in Appendix 3.5.8.

Remark 3.3.2. Proposition 3.3.4 makes it possible to identify the levels of average correlation
that allow reducing the bounds A(q′) and/or B(q) for RVaR. These threshold values are c(q′)
and c(q), respectively. When d > max(c(q), c(q′)) the availability of average correlation does
no longer make it possible to improve the bounds A(q′) and B(q). In particular, if d > c(q) then
u(q) = B(q) and if d > c(q′), then l(q′) = A(q′). A numerical illustration regarding the behaviour
of the threshold values corresponding to various probability levels is given in Figure 3.12.

We can now derive bounds for VaR and TVaR as limiting case of the RVaR bounds proposed
in Proposition 3.3.4.

Proposition 3.3.5. Let 0 < q < q′ < 1, q ∈ (0, 1). It holds that

l(q) 6 VaRdq 6 VaRdq 6 u(q). (3.3.19)
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Moreover,
µ = l(1) 6 TVaRdq 6 TVaRdq 6 u(q). (3.3.20)

Proof. Let q ∈ (0, 1), Xi ∼ Fi (i = 1, 2, ..., n) satisfy acorr(X1, X2, ..., Xn) 6 d, µ =
∑n

i=1 E(Xi)
and S =

∑n
i=1Xi. Then, using Proposition 3.3.4 and the inequalities in (3.3.7) and (3.3.8), we ob-

tain

l(q) 6 lim
r↗q

RVaRd
r,q 6 VaRd

q 6 VaRq(S) 6 VaR+
q (S) 6 VaRd

q 6 lim
r↘q

RVaRd
q,r 6 u(q),

and

µ 6 lim
r↗1

RVaRd
q,r 6 TVaRd

q 6 TVaRq(S) 6 TVaRd
q 6 lim

r↗1
RVaRd

q,r 6 u(q).

The bounds in Proposition 3.3.4 are not best-possible in general, but we provide numerical
evidence that they can be a good approximation for the solution to problems (3.3.3) and (3.3.4)

Numerical study

The goal of this numerical study is twofold. First, in Tables 3.2 and 3.3 we give numerical evidence
that the bounds derived in Proposition 3.3.4 can be a very good approximation for the best-possible
bounds RVaRd

q,q
′ and RVaRd

q,q
′ . Second, in Figure 3.12 and the subsequent discussion we show

how our results can be used to identify under which circumstances the dependence constraint
acorr(X) 6 d has an impact on unconstrained RVaR bounds. Specifically, our analysis indicates
that for q and q′ close to 1 the average correlation constraint does not contain enough dependence
information to impact the unconstrained RVaR bounds.

The numerical procedure adopted to obtain the RVaR bounds numerical approximations dis-
played in Table 3.2 and Table 3.3 builds on the idea, proposed in Bernard et al. (2018a), to use
the RA to infer the dependence structure amongst (X1, X2, ..., Xn) that makes the distribution
function of S =

∑n
i=1Xi as close as possible to a certain target distribution (see also Bernard

et al. (2017)). In our illustration of this numerical procedure, we focus on the RVaR upper bound
as the lower bound numerical approximation can be computed in similar manner. Let us denote
with Z a random variable having the two-point distribution Dq(l(q), u(q)) In order to obtain the
numerical approximation of the solution of problem (3.3.3), we first apply the RA to the matrix
obtained with the sample values of the random vector (X1, X2, ..., Xn,−Z), and we then com-
pute the RVaRq,q

′(S) and acorr(X) using the dependence structure obtained for (X1, X2, ..., Xn)
as output of the RA. If acorr(X) 6 d, the numerical solution of problem (3.3.3) is found. If
acorr(X) > d, we iteratively repeat the procedure using Zε ∼ Dq(lε(q), uε(q)) with a gradually
increasing 0 < ε < d and

lε(q) = max

µ−
√√√√(d− ε)

n∑
i 6=j

std(Xi)std(Xj) +
n∑
i=1

var(Xi)

√
1− q
q

, B(q)

 ,
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uε(q) = min

µ+

√√√√(d− ε)
n∑
i 6=j

std(Xi)std(Xj) +
n∑
i=1

var(Xi)

√
q

1− q
, A(q)

 ,

until the constraint on average correlation is met.
The rationale behind this procedure is the following: if the distribution of Z is admissible for

the risks (X1, X2, ..., Xn), meaning there exists a copula such that S =d Z with S =
∑n

i=1Xi,
then we know from Proposition 3.3.4 the upper-bound in (3.3.17) is best-possible. The numerical
method described above aims to find the dependence structure such that distribution of S is as close
as possible to the distribution of Z. Note that even when Dq(l(q), u(q)) is not admissible for S, the
numerical procedure output gives a feasible distribution for S that can be used to check whether or
not the numerical bounds are close to those derived in Proposition 3.3.4.

Table 3.2: Lognormal distribution. Bounds for RVaRq,q′(S), S =
∑n

i=1Xi, q = 0.95, q′ = 0.98,
Xi ∼ Lognormal(µ, σ) with µ = 2.5 and σ = 0.23 for i = 1, 2, ..., n. In each table, the bounds obtained
using the RA are reported under the column “RA”, while the bounds computed as from Proposition 3.3.4,
resp. Proposition 3.3.2 are reported under the column “Proposition 3.3.4”, resp. “Proposition 3.3.2”. In
sub-tables 3.2a, 3.2b, 3.2c and 3.2d, we use values of d such that d 6 min(c(q), c(q′)) for which we know
u(q) < B(q) and l(q′) > A(q′). In sub-table 3.2e we assess whether the unconstrained bounds given in
Proposition 3.3.2 can be attained. The number of discretization points is set equal to 10.000.

d RA Proposition 3.3.4
-0.4889 (37.48;40.79) (37.42;40.81)
-0.4410 (37.29;45.04) (37.28;45.08)
-0.3555 (37.15;49.28) (37.14;49.34)
-0.2324 (37.01;53.54) (37.00;53.61)

(a) Constrained RVaR bounds for n = 3.

d RA Proposition 3.3.4
-0.1029 (124.7;136.0) (124.7;136.0)
-0.0674 (124.3;150.1) (124.3;150.3)
-0.0041 (123.8;164.3) (123.8;164.5)
0.0871 (123.3;178.6) (123.3;178.7)

(b) Constrained RVaR bounds for n = 10.

d RA Proposition 3.3.4
-0.0128 (623.6;679.9) (623.6;680.1)
0.0197 (621.3;750.6) (621.3;751.3)
0.0779 (619.0;821.4) (619.0;822.4)
0.1616 (616.7;892.3) (616.6;893.5)

(c) Constrained RVaR bounds for n = 50.

d RA Proposition 3.3.4
-0.0026 (1247.0;1360.0) (1247.0;1360.0)
0.0296 (1243.0;1502.0) (1243.0;1503.0)
0.0871 (1238.0;1644.0) (1238.0;1645.0)
0.1701 (1233.0;1786.0) (1233.0;1787.0 )

(d) Constrained RVaR bounds for n = 100.

RA Proposition 3.3.2
n=3 (36.99;58.60) (36.99;58.92)
n=10 (123.3;196.4) (123.3;196.4)
n=50 (616.5;982.0) (616.5;982.0)
n=100 (1233;1964) (1233;1964)

(e) Unconstrained RVaR bounds.
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Table 3.3: Standard uniform distribution. Bounds for RVaRq,q′(S), S =
∑n

i=1Xi, Xi ∼ U [0, 1] for
i = 1, 2, ..., n for q = 0.90 and q′ = 0.95. In each table, the bounds obtained using the RA are reported
under the column “RA”, while the bounds computed as from Proposition 3.3.4, resp. Proposition 3.3.2 are
reported under the column “Proposition 3.3.4”, resp. “Proposition 3.3.2”. In sub-tables 3.3a, 3.3b, 3.3c and
3.3d, we use values of d such that d 6 min(c(q), c(q′)) for which we know u(q) < B(q) and l(q′) > A(q′).
In sub-table 3.3e we assess whether the unconstrained bounds given in Proposition 3.3.2 can be attained.
The number of discretization points is set equal to 10.000.

d RA Proposition 3.3.4
-0.4915 (1.485;1.696) (1.485;1.696)
-0.4548 (1.466;1.951) (1.466;1.951)
-0.3892 (1.446;2.205) (1.446;2.206)
-0.2947 (1.427;2.460) (1.427;2.461)

(a) Constrained RVaR bounds for n = 3.

d RA Proposition 3.3.4
-0.1048 (4.950;5.654) (4.950;5.654)
-0.0776 (4.885;6.503) (4.885;6.504)
-0.0290 (4.820;7.353) (4.820;7.354)
0.0409 (4.755;8.203) (4.755;8.203)

(b) Constrained RVaR bounds for n = 10.

d RA Proposition 3.3.4
-0.014 (24.75;28.27) (24.75;28.27)
0.010 (24.43;32.52) (24.43;32.52)
0.056 (24.10;36.77) (24.10;36.77)
0.119 (23.78;41.02) (23.78;41.02)

(c) Constrained RVaR bounds for n = 50.

d RA Proposition 3.3.4
0.003 (49.25;59.80) (49.25;59.81)
0.030 (48.68;67.21) (48.68;67.22)
0.072 (48.12;74.62) (48.12;74.62)
0.128 (47.55;82.03) (47.55;82.03)

(d) Constrained RVaR bounds for n = 100.

RA Proposition 3.3.2
n=3 (1.425; 2.849) (1.425; 2.850)
n=10 (4.750; 9.499) (4.750; 9.500)
n=50 (23.75; 47.50) (23.75; 47.50)
n=100 (47.50; 95.00) (47.50; 95.00)

(e) Unconstrained RVaR bounds.

In all cases reported in Tables 3.2 and 3.3, the bounds from Propositions 3.3.2 and 3.3.4 seem
to be a good approximation of the bounds obtained numerically. For the sum of standard uniform
distributions, this encouraging result is confirmed from a theoretical point of view in section 3.3.3,
where we prove that in this case the bounds from Proposition 3.3.4 are in fact best-possible.

Figure 3.12 displays the quantity c(p) defined in (3.3.16) for several values of p ∈ (0, 1). As
pointed in Remark 3.3.2, c(p) allows us to identify which values of d are such that the constraint
acorr(X) 6 d makes it possible that the RVaR bounds from Proposition 3.3.4 improve those
obtained using solely the marginal distributions. Clearly, the analytical expression of c(p) depends
on the marginal distributions so each case needs its own evaluation. Nonetheless, we observe that in
both cases considered in Figure 3.12, the function c(p) exhibits a similar shape. We underline that
in both cases reported in Figure 3.12, for p close to 1, c(p) moves toward the average correlation
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Figure 3.12: Illustration of the quantity c(p) defined in (3.3.16) for p ∈ (0, 1). Panel A displays the case
Xi ∼ U [0, 1] for i = 1, 2, ..., n and n = 10. Panel B displays the case Xi ∼ Lognormal(µ, σ), µ = 2.5,
σ = 0.23 for i = 1, 2, ..., n and n = 3. In each panel, the two horizontal black lines describe the maximum
and minimum level of acorr(X1, X2, ..., Xn) for the given marginal distribution functions.
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lower bound. This can be explained as follows. When the marginal distributions are bounded from
the right, we have that limp↗1B(p) < +∞, and thus limp↗1(1 − p)(B(p) − µ)2 = 0. Moreover,
limp↗1 p(A(p)−µ))2 = 0 always holds. From the expression of c(p) given in (3.3.16), we deduce
limp↗1 c(p) =

−
∑n
i=1 var(Xi)∑n

i 6=j std(Xi)std(Xj)
. Note that this limiting value of c(q) coincides with the average

correlation lower bound. Any continuous distribution can be approximated with a discrete one
with any degree of precision, but once the discretization is set, the approximate distributions we
use to compute c(p) and the RVaR bounds are bounded from the right, and thus the limits derived
above are valid.

Therefore, regardless of the marginal distributions, for q and q′ close to 1 one can reasonably
expect that the inferred value for d will be higher than c(q) and c(q′), and this implies that the
bounds in Proposition 3.3.4 will coincide with A(q′) and B(q), i.e., the unconstrained bounds. As
for the case of the VaR upper bound, these conclusions are in line with the results obtained in
Section 3.2.1, where we showed that for a high probability level, knowledge of the dependence
constraint typically has no impact on the VaR upper bound. By contrast, in Section 3.2.2 we
reached different conclusions for the VaR lower bound. This mismatch is determined by the fact
that in case n = 2, we study the VaR lower bound with an equality constraint, while in the general
case n > 2 we consider the RVaR lower bound under an inequality constraint, as stated in problem
(3.3.4). From our results in Section 3.2.2, it is clear that if one re-formulates the constraint lower
VaR problem using an inequality constraint in the form δ(C,F1, F2) 6 d, then also the VaR lower
bound for n = 2 can hardly be affected by the correlation constraint for q close to 1.



3.3. RVaR risk bounds with n risks 67

3.3.3 Standard uniform distributions

The bounds derived in Proposition 3.3.4 can offer a good approximation of the best-possible
bounds, but they remain an approximation in general. To show that they are not best-possible in
general, consider first the case in which u(q) reduces to B(q) (the case of unconstrained bounds).
The upper bound B(q) is then best-possible and even attainable when there exists a dependence
among Yi ∼ Fi,q such that Y1 + ... + Yn is mixing with mixing constant B(q), as in this case
RVaRq,q

′(X1 + ... + Xn) = B(q) where Xi = IUi<qF
−1
i,0 (Ui) + IUi>qYi. Here, Ui is standard

uniformly distributed for i = 1, 2, ..., n, F−1i,0 denotes the restriction of the F−1i to (0, q) and F−1i,q

is their restriction to (q, 1). Puccetti and Wang (2015a) discuss extensively situations in which
such dependence among Yi ∼ Fi,q exists, the most relevant case is when the Fi,q have decreasing
density on a bounded support (e.g., Beta distributions, Uniform distributions). Importantly, mixing
among the Yi cannot be obtained when the Fi are unbounded to the right (e.g., normal or lognormal
distributions). A similar reasoning also applies to the case of lower bounds.

The situation in which u(q) does not reduce to B(q) (case of constrained bounds) is interesting
for practical purposes but to the best of our knowledge there are no results yet in the literature
that demonstrate this bound is best-possible in some cases of interest. In the following theorem,
we provide the first contribution to this kind of research. Motivated by the good numerical results
displayed in Table 3.3, we completely solve the upper (lower) bound problem on RVaR for sums
of uniformly distributed risks under a correlation constraint.

The proof of this result builds on a remarkable result of Mao et al. (2019) who proved that if
n > 3 and Xi ∼ U [0, 1] for i = 1, 2, ..., n, any distribution G lower than U [0, n] in convex order
belongs to the set of possible distributions for the sum S =

∑n
i=1Xi.

When considering the sum of uniform distributions, the expressions of l(p), u(p) and c(p),
given in (3.3.16), become

l(p) = max

(
n

2
−
√
dn(n− 1) + n

12

√
1− p
p

,
n

2
p

)
,

u(p) = min

(
n

2
+

√
dn(n− 1) + n

12

√
p

1− p
,
n

2
(1 + p)

)
,

c(p) =
3np(1− p)− 1

n− 1
.

(3.3.21)

Observe that l(q′) and u(q) coincide with the unconstrained lower bound A(q′) = n
2
q′ and B(q) =

n
2
(1 + q), respectively, if and only if d > c(q′), resp. d > c(q).

Theorem 3.3.6 (Best-possible RVaR bounds for sums of n > 3 uniformly distributed random
variables under a correlation constraint). Let Xi ∼ U [0, 1] for i = 1, 2, ..., n, acorr(X1, ..., Xn) 6
d, and let S =

∑n
i=1Xi. Then,

RVaRd
q,q
′ = l(q′)

and
RVaRdq,q′ = u(q).
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Proof. We prove the result for case of the upper bound u(q). The case of the lower bound is
similar. Since the bounds u(q) has two different analytical expressions according to the value of
the constraint d we will consider these two cases separately.

In the first case: d > c(q), we define a random variable S1 having a two-point distribution
described in (3.3.22):

S1 =

{
n
2
q with probability q,

n
2
(1 + q) with probability 1− q.

(3.3.22)

Furthermore, we have that for p ∈ (q, 1)

TVaRp(S1) =
n

2
(1 + q) 6

n

2
(1 + p) = TVaRp(U [0, n]).

and for p ∈ (0, q]

TVaRp(S1) = (1− p)
(

(q − p)n
2
q + (1− q) n

2
(1 + q)

)
=

n

2

1− qp
1− p

6
n

2
(1 + p) = TVaRp(U [0, n])

In other words, the condition TVaRp(S1) 6 TVaRp(U [0, n]) holds for all p ∈ (0, 1), and this con-
dition is equivalent to S1 6cx U [0, n] (see Theorem 3.A.5 in Shaked and Shanthikumar (2007), for
instance). Thanks to Theorem 4.3 in Mao et al. (2019), for n > 3, we deduce that the distribu-
tion of S1 belongs to the set of possible distributions for the sum of n random variables uniformly
distributed on the interval [0, 1].

In the second case: d < c(q), we define a random variable S2 having two mass points,

S2 =


n
2
−
√

dn(n−1)+n
12

√
1−q
q

with probability q,

n
2

+
√

dn(n−1)+n
12

√
q

1−q with probability 1− q.
(3.3.23)

The quantile function of S2 up-crosses the quantile function of S1, which implies S2 6cx

S1 6cx U [0, n]. Hence, for n > 3, the distribution of S2 is attainable by the sum of n uniformly
distributed random variables, for the same argument explained above.

It would be of great interest to extend the result stated in Theorem 3.3.6 to a more general set
of marginal distributions and to also include the case n = 2. In this regard, we point out that our
proof builds on a result of Mao et al. (2019) and these authors clarified that it seems difficult to
extend their results to other than standard uniform distributions and to the case n = 2.



3.4. Final remarks 69

3.4 Final remarks
The recent literature related to risk aggregation problems under partial dependence uncertainty has
focused on identifying the sources of dependence information that can be easily inferred from the
available data but that are also able to reduce risks bounds. The contributions of our analysis to
this complex question are the following. For the sum of two risks, we show that VaR and TVaR
worst-case values are typically not affected by additional dependence information when the latter
is described by Spearman’s rho, Kendall’s tau or Pearson correlation. By contrast, we show that
such dependence information may impact the VaR lower bound value. For the sum of three or
more risks, we derive explicit RVaR bounds in the presence of an average correlation constraint
and we show that theses bounds are best-possible for the sum of n > 3 risks having standard
uniform distributions. We give evidence that when the RVaR is assessed at high confidence levels,
an inequality constraint on average correlation can hardly improve the dependence uncertainty
spread between the worst- and the best-case scenarios. The VaR and TVaR bounds are derived
as limiting cases. Overall, our results make clear that the sources of dependence information we
consider here, despite being quite popular in the banking and insurance industry, do not guarantee
a reduction of the worst-case values of tail risk measures.
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3.5 Appendix

3.5.1 Proof of Lemma 3.2.2
Proof. Let q ∈ (0, 1). First, we prove that if C ∈ C (q), then the inequality in (3.2.15) holds. Note
that for all copulas C ∈ C (q) the following observations hold:

• if (u, v) ∈ [q, 1]2, then C(u, v) = Cq
min(u, v) = Cq

max(u, v) = max(q, u+ v − 1).

• C(q, q) = q

• ∀(u, v) ∈ [0, q]× [1, q], C(u, v) = u

• ∀(u, v) ∈ [q, 1]× [0, q], C(u, v) = v

From the observations above, the inequalities in (3.2.15) need to be proven only in [0, q[2. We start
by showing that in [0, q[2 it is not possible to find a copula C ∈ C (q) that is pointwise lower than
Cq
min. First, consider (u, v) ∈ [0, q[2 such that u+ v − q 6 0. Since Cq

min(u, v) = 0 in such point,
a copula C cannot be strictly lower than Cq

min. Second, consider (u, v) such that u + v − q > 0.
By definition, any copula must satisfy the following two-increasing property (Nelsen (2010))

C(q, q) + C(u, v)− C(u, q)− C(q, v) > 0, (3.5.1)

but for the point (u, v) we are considering and C ∈ C (q), the inequality (3.5.1) can be expressed
as

q + C(u, v)− u− v > 0. (3.5.2)

If C(u, v) < Cq
min(u, v), then

q + C(u, v)− u− v < q + Cq
min(u, v)− u− v = 0, (3.5.3)

which violates the assumption that C is a copula. The first inequality in (3.2.15) is completely
proven.

As for the second inequality, observe that in [0, q[2, Cq
max coincides with the Fréchet-Hoeffding

upper bound. Hence, in [0, q[2, Cq
max is pointwise higher or equal than any other copula.

Note the implication Cq
min(u, v) 6 C(u, v) 6 Cq

max(u, v) =⇒ C ∈ C (q) simply follows
from the fact that Cq

min and Cq
max coincide on [q, 1]2, and thus also such C must exhibit an anti-

monotonic dependence structure on [q, 1]2.

3.5.2 Proof of Theorem 3.2.3
Proof. First note that thanks to Lemma 3.2.2, the interval [δmin, δmax] is well defined (δmin 6 δmax
always holds). To prove the statement, let Cα be a mixture of the two copulas Cq

min and Cq
max, i.e.,

Cα = (1 − α)Cq
min + αCq

max with α ∈ [0, 1]. Since the two copulas Cq
min and Cq

max coincide on
[q, 1]2, it is straightforward to check that Cα belongs to C (q). By Assumption 3.2.1, δ is such that
the function α 7→ δ(Cα, F1, F2) is a continuous function of α. Thus, we have δ(C0, F1, F2) = δmin



3.5. Appendix 71

and δ(C1, F1, F2) = δmax. Thanks to the continuity of δ(Cα, F1, F2) w.r.t. α we can use the
intermediate value theorem and conclude that for all δ ∈ [δmin, δmax] there exists α ∈ [0, 1] such
that and δ(Cα, F1, F2) = δ.

Using the results we just proved, it is clear that for each d ∈ [δmin, δmax] there exists a copula
C in C (q) that satisfies the constraint δ(C,F1, F2) = d. Thanks to Proposition 3.2.1, we know that
all copulas in C (q) attain the unconstrained VaR+ upper bound, and thus VaRd

q = VaRq.

3.5.3 Proof of Proposition 3.2.4
Proof. Assume the hypotheses in Proposition 3.2.4 are satisfied. Fix q ∈ (0, 1) and d ∈ (δmin(q), δmax(q)).

First, let us denote with ṼaR
d

q the solution to the problem we are studying, namely

ṼaR
d

q := sup VaRq(X1 +X2)

subject to Xj ∼ Fj, j = 1, 2

δ(X1, X2) = d

(3.5.4)

Observe that for given q ∈ (0, 1) and q∗ ∈ (0, q) it holds that

VaRd
q
∗ 6 ṼaR

d

q 6 VaRd
q . (3.5.5)

where
VaRd

q
∗ := sup VaR+

q
∗(X1 +X2)

subject to Xj ∼ Fj, j = 1, 2

δ(X1, X2) = d

(3.5.6)

Since d ∈ (δmin(q), δmax(q)), we can use Theorem 3.2.3 to conclude VaRd
q = VaRq. Further-

more, since d ∈ (δmin(q), δmax(q)) and since the mappings δmin : q 7→ δ(Cq
min, F1, F2) and

δmax : q 7→ δ(Cq
max, F1, F2) are continuous, it is clear that there exists qd ∈ (0, q) such that

d ∈ (δmin(q∗), δmax(q
∗)), for all q∗ ∈ (qd, q). Using again Theorem 3.2.3, for all q∗ ∈ (qd, q) we

obtain VaRd
q
∗ = VaRq

∗ .
These last observations together with the inequalities in (3.5.5) imply that there exists qd ∈

(0, q) such that for all q∗ ∈ (qd, q) the following inequalities hold:

VaRq
∗ 6 ṼaR

d

q 6 VaRq. (3.5.7)

Thus, it is clear that
lim
q
∗↗q

VaRq
∗ 6 ṼaR

d

q 6 VaRq. (3.5.8)

where limq
∗↗q VaRq

∗ denotes the right limit of VaRq
∗ as q∗ approached q from below. From Lemma

4.4 in Bernard et al. (2013), the mapping q 7→ VaRq is continuous on (0, 1) if F−11 (q) and F−12 (q)
are continuous for q ∈ (0, 1). Hence, we get limq

∗↗q VaRq
∗ = VaRq, which completes the proof.
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3.5.4 Proof of Lemma 3.2.5

Proof. To prove (3.2.19) and (3.2.20) it is useful to split the hypercube [0, 1]2 into four subsets,
namely

D1 = [q, 1]2, D2 = [0, q]2, D3 = [0, q]× [q, 1] and D4 = [1, q]× [0, q].

Using these subsets, for any function f integrable on [0, 1]2, we can write∫∫
[0,1]

2
f(u, v)dudv =

4∑
i=1

∫∫
Di

f(u, v)dudv

The technique adopted here is to integrate separately on each Di, and then to sum up the results.
For example, to prove ρmax in(3.2.19), for any fixed q ∈ [0, 1], we want to express ρmax as a
function of q. To do so, we calculate the following integral

ρmax = 12

∫∫
[0,1]

2
Cq
max(u, v)dudv − 3. (3.5.9)

The details are available upon request and we only report the values for the four integrals over D1,
D2, D3 and D4. We find that∫∫

D1

Cq
max(u, v)dudv =

∫∫
[q,1]

2
q + max(u+ v − 1− q, 0)dudv = q(1− q)2 − 1

6
(q − 1)3

∫∫
D2

Cq
max(u, v)dudv =

∫ q

0

∫ q

0

min(u, v)dudv =

∫ q

0

qu− u2

2
du =

q3

3
.

∫∫
D4

Cq
max(u, v)dudv =

∫∫
D3

Cq
max(u, v)dudv =

∫ q

0

∫ 1

q

min(u, v)dudv =
q2

2
(1− q)

After summing up the results of integrals on D1, D2, D3 and D4 and simplifying we obtain the
result in (3.2.19). The calculations to obtain ρmin, τmax and τmin are very similar, hence we do not
report them here.

3.5.5 Proof of Proposition 3.2.11

Proof. The fact C ∈ C L(q) =⇒ VaRq(X1 + X2) = VaRq follows from Lemma 3.2.8. We shall
prove now the opposite implication. Since Xi ∼ U(0, 1) for i = 1, 2, we have VaRq = q. It is well
known that given the marginals distributions the LTVaR is minimal for comonotonic risks. Thus,
with uniform marginals we have has the following lower bound,

LTVaRq(S) =
1

q

∫ q

0

VaRγ(S)dγ > LTVaRq(S
c) = q. (3.5.10)
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Assume now that VaRq(S) = q. Since the VaR in non-decreasing w.r.t to the probability level,
we have VaRγ(S) 6 q, for all γ ∈ (0, q). Note that if we assume that there exists γ∗ ∈ (0, q)
such that VaRγ

∗(S) < q the corresponding LTVaR would be strictly lower than q and this would
lead to a contradiction of (3.5.10). Thus, it is clear that if a quantile function of S = X1 + X2

satisfies VaRq(S) = q, then it must satisfy VaRγ(S) = q, for all γ ∈ (0, q). Observe now that if
VaRq(S) = q, then LTVaRq(S) = q and thus TVaRq(S) = 1 + q = TVaRq(X1) + TVaRq(X2),
which is the maximum TVaR attainable with these marginals. From Lemma 3.2.13, the maximum
TVaRq(S) is achieved if and only if the copula C is q-concentrated. Finally, if C is q-concentrated
and makes the quantile function of S = X1 + X2 constant and equal to q on (0, q), then C must
belong to C L(q).

3.5.6 Proof of Lemma 3.2.15

Proof. We recall that Cq
min and Cq

max, defined in (3.2.11) and (3.2.12), both belong to C (q) and
from Lemma 3.2.2 these copulas are the pointwise lowest and highest copulas in C (q), respec-
tively. Since Cq

min(q, q) = q and Cq
max(q, q) = q, we conclude that C (q) ⊆ CTV aR(q). Observe,

for example, that for each q ∈ (0, 1) the comonotonic copula is in CTV aR(q) but not in C (q), and
therefore C (q) ⊂ CTV aR(q).

CTV aR(q) is obviously convex: let C1 and C2 be two copulas belonging to CTV aR(q). Then, for
each α ∈ [0, 1], the copulaCα = αC1+(1−α)C2 satisfiesCα(q, q) = αC1(q, q)+(1−α)C2(q, q) =
q and therefore belongs to CTV aR(q).

3.5.7 Proof of Theorem 3.2.16

The following lemma will be useful in the proof of Theorem 3.2.16.

Lemma 3.5.1. Let q ∈ (0, 1), and C be a copula in set CTV aR(q). Then,

C(u, v) > Cq
min(u, v), ∀(u, v) ∈ [0, 1]2. (3.5.11)

Proof. To prove that Cq
min is the pointwise lower bound copula in CTV aR(q) it is convenient to

split the square [0, 1]2 into the following subsets:

• For (u, v) ∈ [0, q[2, the proof is the same as the beginning of the proof of Lemma 3.2.2,
where we proved that Cq

min is the pointwise lower bound copula in C (q).

• For (u, v) ∈ [0, q[×]q, 1] and (u, v) ∈]q, 1]×]0, q] all the copulas in CTV aR(q) assume the
same values, see Remark 3.2.2.

• For (u, v) ∈ [q, 1]2 we need to further split this region as follows.

– If (u, v) ∈ [q, 1]2 and u + v 6 1 + q, then by equation (3.2.46), C ∈ CTV aR(q) ⇐⇒
C(q, q) = q, and for the points we are considering it must hold that C(u, v) >
C(q, q) = q = Cq

min(u, v).
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– If (u, v) ∈ [q, 1]2 and u+ v > 1 + q, then Cq
min(u, v) = u+ v − 1 = Ca(u, v), and Ca

(the anti-monotonic copula) is the pointwise lowest copula in general, which ends the
proof.

The proof of Theorem 3.2.16 now simply follows from Lemma 3.2.14, Lemma 3.2.15, Lemma
3.5.1 and an argument similar to the proof of Theorem 3.2.3.

3.5.8 Proof of Proposition 3.3.4

Proof. The proof is organized as follows. First, we are going to derive RVaR bounds for given
marginals in the case when a constraint on the variance sum is assumed. Second, we use the one-
to-one relationship between the variance sum and the average correlation to express the bounds in
terms of average correlation. For n given marginal distributions F1, F2, ..., Fn and s2 > 0, denote
by F

s
2 the set of possible distributions for the sum S that satisfy var(S) 6 s2, that is

F
s
2 = F

s
2 (F1, ..., Fn) =

{
cdf of S = X1 + ...+Xn : Xi ∼ Fi for i = 1, .., n, var(S) 6 s2

}
Let now S

s
2 be the set of random variables having a distribution in F

s
2 ,

S
s
2 = S

s
2 (F1, ..., Fn) =

{
X : FX ∈ Fs2

}
.

Let us denote with V6(µ, s2) the set of random variables having a mean equal to µ and a variance
lower or equal than s2:

V6(µ, s2) =
{
X : E(X) = µ, var(X) 6 s2,

}
.

The inequality V (µ, s2) ⊂ V6(µ, s2) is trivial.
Let µ =

∑n
i=1 E(Xi), it is clear that S

s
2 ⊆ V6(µ, s2). Thanks to Proposition 3.3.3, we deduce

that for any 0 < q < q′ < 1, the maximum and minimum RVaRs attainable in V6(µ, s2) are
achieved by two distributions that belong also to V (µ, s2). Consequently,

sup
X∈S

s
2

RVaRq,q
′(X) 6 max

X∈V6(µ,s
2
)

RVaRq,q
′(X) = max

X∈V (µ,s
2
)

RVaRq,q
′(X) = µ+s

√
q

1− q
, (3.5.12)

inf
X∈S

s
2

RVaRq,q
′(X) > min

X∈V6(µ,s
2
)

RVaRq,q
′(X) = min

X∈V (µ,s
2
)

RVaRq,q
′(X) = µ− s

√
1− q′

q′
.

(3.5.13)
Combining the inequalities in (3.5.12) and (3.5.13) with Proposition 3.3.2, we find that

sup
X∈S

s
2

RVaRq,q
′(X) 6 min

(
µ+ s

√
q

1− q
, B(q)

)
(3.5.14)
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inf
X∈S

s
2

RVaRq,q
′(X) > max

µ− s√1− q′

q′
, A(q′)

 . (3.5.15)

We will show now that if s2 > q′
(
A(q′)− µ

)2
+ (1 − q′)

(
B(q′)− µ

)2, then l(q′) = A(q′) (the
proof of s2 > q (A(q)− µ)2 + (1− q) (B(q)− µ)2 =⇒ b(q) = B(q) is very similar).

Let X∗ ∼ Dq
′(A(q′), B(q′)), then

E(X∗) = q′A(q′) + (1− q′)B(q′) = µ,

var(X∗) = q′
(
A(q′)− µ

)2
+ (1− q′)

(
B(q′)− µ

)2
,

RVaRq,q
′(X∗) = A(q′) =

n∑
i=1

LTVaRq
′(Xi).

Therefore, if the variance constraint s2 is higher than the threshold q′
(
A(q′)− µ

)2
+(1−q′)

(
B(q′)− µ

)2,
one has X∗ ∈ V6(µ, s2) and

A(q′) = RVaRq,q
′(X∗) > min

X∈V6(µ,s
2
)

RVaRq,q
′(X) = µ− s

√
1− q′

q′
.

To complete this part of the proof, one only needs to use the one-to-one relationship between
the variance of the sum and the average correlation expressed in equation (3.3.2). The bounds in
(3.5.14) and (3.5.15) and the condition s2 > q′

(
A(q′)− µ

)2
+(1− q′)

(
B(q′)− µ

)2 are expressed
in terms of the standard deviation of the sum s. By rewriting the bounds in terms of the average
correlation constraint d, we obtain the bounds l(q′) and u(q). Using the same approach, one finds
the values c(q) and c(q′).

We shall now prove that the equality RVaRd
q,q
′ = u(q) holds if there exists a copula such that

acorr(X) 6 d and S is mixing in the upper q-part of its distribution with mixing constant u(q). If
the hypothesis is satisfied, the mixability of S in its q-upper part with mixing constant u(q) implies
that

VaRp(S) = u(q),∀p ∈ (q, 1).

Therefore,

RVaRq,q
′(S) =

1

q′ − q

∫ q
′

q

VaRp(S)dp =
1

q′ − q

∫ q
′

q

u(q)dp = u(q).

The proof for the lower bound is very similar and we omit it.





Chapter 4

Robust assessment of life insurance
products

4.1 Introduction
The actuarial literature related to model risk assessment has experienced rapid growth in recent
years. The idea behind this field of research is that any actuarial evaluation is prone to error in that
the underlying loss distribution is typically only partially known. As illustrated in Chapter 3, there
is extensive literature on finding bounds on a risk measure. Clearly, a main quantity of actuarial
interest that can be affected by model misspecification is the premium to be paid for an insurance
contract. The net premium of a life insurance contract depends essentially on two ingredients:
the residual lifetime distribution function (actuarial risk) and the discount curve (financial risk).
The goal of the present Chapter is to develop a framework that can help the insurer to deal with
model risk that arises from a misspecified residual lifetime distribution function. Recent studies
have shown that in a low-interest rate environment longevity risk becomes the major risk-driver
of the life insurance business; see Haberman et al. (2011), Antolin (2007), Rabitti and Borgonovo
(2020), and some of the references therein.

Several competing longevity models (or mortality forecast models) have been proposed in the
literature. For an overview, see for instance Pitacco et al. (2009). Nonetheless, as is the case for
any statistical procedure’s output, a projected life table can never be completely trusted. In the life
insurance literature, the study of the effect of model misspecification on the price of a contract is
usually conducted using a parametric approach: it is assumed that the residual lifetime distribu-
tion belongs to one or more given families of probability distributions with uncertain parameters.
Olivieri (2001), Olivieri and Pitacco (2011), and Cairns (2000) offer discussions of this approach
and provide some case studies. We propose to tackle this problem using a non-parametric ap-
proach. The estimated probability distribution that arises from the life-table will be considered as
a reference distribution function. One can wonder about the range of the price of an insurance
contract when we consider all the distribution functions that are somehow close to the reference
distribution function, but not necessarily coming from the same parametric family. In order to
formalize the notion of closeness between probability distributions, we will make use of the L2

77
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metric between two distribution functions (in a similar spirit as in Pichler (2014)).
There is growing interest in the impact of model risk on insurance pricing. Escobar and Pflug

(2020) study the sensitivity and continuity of the distortion premium with respect to the Wasser-
stein distance. In the context of reinsurance pricing of large catastrophic events, Dietz and Walker
(2019) and Dietz and Niehörster (2021) offer analyses that link theory on model risk developed
in actuarial science with recent results on decision making under ambiguity derived in the eco-
nomic literature. In particular, these authors develop a theory that formally motivates premium
loadings due to ambiguity. Finally, in the context of life insurance pricing, Pichler (2014) derives
upper bounds on a coherent risk measure of a life insurance contract when the lifetime distribution
function is known to sit in a Wasserstein ball built around a reference distribution function. Since
this latter paper studies a problem closely related to the one we consider here, in Section 4.6 we
compare our results to those obtained in this paper.

Section 4.2 is devoted to the mathematical formulation of the problem at hand and to the mod-
elling of ambiguity using the L2 metric. We start with a review of some basic life insurance con-
cepts, such as the equivalence principle, and then move to the definition of the premium bounds,
whose computation and properties are the main goal of the present analysis.

Section 4.3 contains most of our results regarding the properties and computation of the pre-
mium bounds. We show that best- and worst-case values for the premium can be explicitly com-
puted using a convex Quadratically Constrained Linear Program (QCLP). By studying the prop-
erties of this linear program we prove that premium bounds enjoy desirable properties, such as
continuity with respect to the L2 distance constraint. In some cases, we are able to derive the
analytic expressions of the feasible probability distributions that maximize and minimize the pre-
mium.

Section 4.4 provides several numerical examples that illustrate how our results can be used to
obtain a robust assessment of an annuity contract. Specifically, the examples we provide show
how our results can be useful in studying the net premium bounds, the probability distributions
attaining the bounds, the relationship between model risk and interest rates, and the robust expected
discounted utility maximization.

In Section 4.5, we show that the framework we developed is flexible enough to handle addi-
tional constraints other than the L2 distance constraint. Specifically, we show how the framework
makes it possible to deal with the important case in which the feasible distribution functions are
assumed to be unimodal.

Section 4.6 offers a detailed comparison of our results with those obtained in Pichler (2014).
In particular, we highlight the main advantages of describing uncertainty via the L2 metric as
compared to the Wasserstein distance used in Pichler (2014).

4.2 Problem formulation

Let Tx be the residual lifetime of an individual at age x and let be Kx be the curtate remaining
lifetime, defined as the integer part of Tx, Kx = bTxc.

It is common to assume that the individual residual lifetime cannot exceed a certain value ω.
Hence,H = {0, 1, 2, ..., ω − x} is the set containing all possible outcomes of the random variable
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Kx. We denote by q =
(
0|1qx, 1|1qx, ..., ω−x|1qx

)t the column vector describing the probability
distribution of Kx, namely h|1qx = P (Kx = h), for h ∈ H. The quantities h|1qx are usually
estimated and reported in a life table. Finally, let g : H → R be the payoff function of an insurance
contract. To be more specific, the function g associates to each h ∈ H the present value of all
future payments that the insurer must pay to the beneficiaries of the contract if Kx = h.

4.2.1 Equivalence principle in life insurance

Several pricing principles have been proposed in the actuarial literature. Notable examples are
the mean-variance pricing principle, the distortion premium principle, and the utility equivalence
principle. The interested reader can find an overview in Young (2014). The present analysis
focuses mainly on the equivalence principle. Since we will consider contracts having fixed benefits,
i.e., contracts in which the amount of benefits is stated at policy issue, the equivalence principle
can be defined as follows.

Definition 4.2.1 (Equivalence principle with fixed benefits). Given the distribution of Kx and a
contract payoff function g(·), the equivalence principle sets the net premium π of the insurance
contract equal to

π = E(g(Kx)).

For further details on the equivalence principle and its application in insurance pricing, we
refer to Chapter 4 of Olivieri and Pitacco (2011) and Chapter 6 of Dickson et al. (2009). In this
framework, the net premium of an insurance contract is set equal to the expected present value
of the benefits, also called actuarial value in the life insurance literature. The equivalence pricing
principle is conceptually simple and well established in the industry practice. Note that π depends
solely on the payoff function and the probability distribution of Kx, that is π is law-invariant. We
report here some concrete examples of payoff functions g(·) 1.

• Pure endowment: the amount S will be paid to the beneficiaries after m years if the insured
is alive at that time. Since mpx = P (Kx > m) =

∑ω−x
h=m h|1qx, the net premium

π = S(1 + r)−m mpx = S(1 + r)−m
ω−x∑
h=m

h|1qx

can be written as π = E (g (Kx)) with

g(h) =

{
0 , if h < m

S(1 + r)−m , if h > m.

1For notational convenience, the examples of payoff functions reported in the sequel are written considering the
case of a constant annual discounting interest rate r, corresponding to a flat yield curve. This leads to a discount
function in the form v(h) = (1+ r)−h, for all h ∈ H. Nonetheless, all our results remain valid for any possible shape
of the yield curve adopted to compute the present value of future cash flows.
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• Endowment insurance: the amountCh will be paid at time h to the beneficiaries if the insured
dies between time h − 1 and h, for h 6 m, where m denotes the policy term. The amount
S will be paid after m years to the beneficiaries if the insured is alive at that time. The net
premium of this contract

π =
m∑
h=1

Ch(1 + r)−hh−1|1qx + S(1 + r)−m
ω−x∑
h=m

h|1qx,

can be written as π = E (g (Kx)) with

g(h) =

{
Ch+1(1 + r)−(h+1) , if h < m

S(1 + r)−m , if h > m.

• Life annuities: the amount bh is paid to the beneficiaries at each time h = 1, 2, ..., ω − x as
long as the insured is alive. Note that there exist many payment structures for life annuities,
such as constant (bh = b for h = 1, 2, ..., ω−x), arithmetically increasing (bh = b1(1 + (h−
1)α)), or geometrically increasing (bh = b1(1 + α)h−1). In any case, we have

π =
ω−x∑
h=1

h∑
j=1

bj(1 + r)−j h|1qx.

This can be written as π = E (g (Kx)) with

g(h) =

{
0 , if h = 0∑h

j=1 bj(1 + r)−j , if h = 1, 2, ..., ω − x.

Observe that, in the setting we consider, the net premium of a life insurance contract depends
solely on the distribution of Kx. However, longevity trends have proven to be quite unpredictable,
i.e., Kx is subject to distributional uncertainty, and several competing methodologies have been
proposed to estimate its probability distribution.

4.2.2 Premium bounds
Any law invariant pricing principle is affected by possible errors made in the evaluation of the prob-
ability distribution of interest. Following Escobar and Pflug (2020), we denote with F a general
ambiguity set, i.e., a collection of probability distributions that are compatible with the available
information.

Given a payoff function g and an ambiguity set F, we will study the upper- and lower-bound for
the net premium computed according to the equivalence principle. These bounds will be denoted
as πF

g and πF
g and are defined as

πF
g = sup{E(g(Kx)) : Kx ∼ F̃ , F̃ ∈ F}. (4.2.1)
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πF
g = inf{E(g(Kx)) : Kx ∼ F̃ , F̃ ∈ F}. (4.2.2)

The interval [πF
g , π

F
g ] will be used to measure the impact of model misspecification (ambiguity)

on the price of the insurance contract identified by the payoff function g. As insurance companies
tend to be conservative in their evaluations, it seems natural that in the presence of the distributional
uncertainty described by F, the upper-bound πF

g could be instrumental in setting the commercial
premium. In this regard, πF

g satisfies the following basic properties that are considered desirable
for a premium principle in the life insurance context, and this holds true regardless of the specific
form of the ambiguity set F.

Proposition 4.2.2. For any ambiguity set F, given two payoff functions g1 and g2, the following
properties hold:

1. Monotonicity: if g1(·) 6 g2(·), then πF
g1

6 πF
g2
.

2. Translational invariance: if g1(·) = c+ g2(·) with c ∈ R, then πF
g1

= c+ πF
g2
.

3. Positive homogeneity: if g1(·) = λg2(·) with λ > 0, then πF
g1

= λπF
g2
.

4. Convexity: if g(·) = αg1(·) + (1− α)g2(·) with α ∈ [0, 1], then πF
g 6 απF

g1
+ (1− α)πF

g2
.

The proof is straightforward and is thus relegated to Appendix 4.8.1. Proposition 4.2.2 partially
extends the results of Theorem 16 in Pichler (2014). On the one hand, Proposition 4.2.2 is more
general than Theorem 16 in Pichler (2014) in that our result is valid for any arbitrary ambiguity set,
whereas Pichler (2014) considers a more specific case of ambiguity sets that are Wasserstein balls.
On the other hand, we consider only the expectation of g(Kx), whereas Theorem 16 of Pichler
(2014) considers a general concave distortion risk measure and thus is indeed more general from
this point of view.

Hereafter, given F̃ ∈ F and a payoff function g(·), we denote with πF̃ the net premium com-
puted with the distribution function F̃ , i.e., πF̃ = E(g(Kx)) with Kx ∼ F̃ .

4.2.3 Modelling distributional uncertainty
In order to compute the premium bounds (4.2.1) and (4.2.2), we need to provide a precise definition
of the ambiguity set F. In this section, we propose to describe ambiguity (uncertainty) using the L2

distance between distribution functions. For a general introduction to theLp metric and its financial
applications see Rachev et al. (2008). For applications in actuarial science, see for instance López-
Díaz et al. (2012) and Yang et al. (2014). In particular, we assume that the distribution of Kx

belongs to a subset of an L2-ball built around a target distribution denoted with F. Interpretatively,
F represents the current best estimate for the df of Kx, although we agree it is subject to model
misspecification. We denote as f = (f0, f1, ..., fω−x)

t its reference probability distribution, i.e.
fh = P (Kx = h) for h = 0, 1, 2, ..., ω − x under the model Kx ∼ F . The L2-ball of radius

√
ε

and center F is defined as
Mε(F ) =

{
F̃
∣∣∣ d(F̃ , F ) 6

√
ε
}
, (4.2.3)
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in which d(F̃ , F ) is the L2 distance between two distribution functions F̃ and F , i.e.,

d(F̃ , F ) =

√∫ +∞

−∞

(
F̃ (t)− F (t)

)2
dt. (4.2.4)

Sometimes we will refer to the L2-ball as a L2 ambiguity set. Since Kx is a discrete random
variable taking values {0, 1, 2, ..., ω − x}, any candidate df of Kx is a step function that can have
jumps only at the values {0, 1, 2, ..., ω − x}, satisfies F̃ (t) = 0 for t < 0 and F̃ (t) = 1, for
t > ω − x. Thus, the distributional uncertainty regarding Kx can be described by considering
all distributions F̃ belonging toMε(F ) that are piecewise constant and with jumps at the points
{0, 1, 2, ..., ω − x}. Although this set is a subset of Mε(F ), in what follows we use the same
notation for it.

If F̃ and F are both piecewise constant, then the function t −→
(
F̃ (t)− F (t)

)2
is also a step

function with jumps at the points {0, 1, 2, ..., ω − x}. Therefore, when we restrict ourself to these
distributions, the L2 distance expression d(F̃ , F ) can be expressed as

d(F̃ , F ) =

√√√√ω−x∑
h=0

(F̃h − Fh)2, (4.2.5)

where F̃h and Fh are the constant values taken by F̃ and F on the interval [h, h + 1), for h =
0, 1, ..., ω − x. A distribution function F̃ ∈ Mε(F ) is uniquely determined by its probability
distribution q =

(
0|1qx, 1|1qx, ..., ω−x|1qx

)t. Therefore, we sometimes write d(q, F ) to denote theL2

distance between F and the distribution function F̃ such that F̃ (h) =
∑h

j=0 j|1qx. Going forward,
we focus on the case in which F = Mε(F ), as described above. In order to clarify that we are
dealing with this ambiguity set, which depends on the parameter ε, we denote the worst- and best-
case prices as πε and πε, respectively. Thus, the problems we aim to study in the remainder of this
analysis can be formulated as follows:

πε = max E (g (Kx))

subject to Kx ∼ F̃ ,

F̃ ∈Mε(F ).

(4.2.6)

πε = min E (g (Kx))

subject to Kx ∼ F̃ ,

F̃ ∈Mε(F ).

(4.2.7)

and we also study the distributions attaining the bounds in (4.2.6) and (4.2.7).

4.3 Computing premium bounds
In this section we focus on the computation and properties of πε and πε in (4.2.6) and (4.2.7).
Moreover, we show how to compute the distributions that achieve the bounds. As a by-product
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of the analysis conducted here, we highlight the convenience of using the L2 distance to describe
distributional uncertainty in this context. As for notation, in what follows, given a vector a =
(a1, a2, ..., an) ∈ Rn with aj > 0 for j = 1, 2, ..., n, we write a > 0.

4.3.1 Problem reformulation
Observe that theL2 ambiguity set can be equivalently expressed in terms of vectors (0|1qx, ..., ω−x|1qx),
i.e., in terms of probability distributions such that

∑h
j=0 j|1qx = F̃h. Thus, Problems (4.2.6) and

(4.2.7) can be rewritten as

min
q

〈y, q〉 =
ω−x∑
h=0

yh h|1qx

subject to
ω−x∑
h=0

(
h∑
j=0

j|1qx − Fh

)2

6 ε,

ω−x∑
h=0

h|1qx = 1,

h|1qx > 0, h = 0, ..., ω − x.

(4.3.1)

where the vector y = (y0, y1, ..., yω−x) can be identified according to the payoff function g con-
sidered. Specifically, Problem (4.2.6) corresponds to the case in which yh = −g(h), and Problem
(4.2.7) corresponds to the case yh = g(h). In the language of operational research, Problem (4.3.1)
can be classified as a Quadratically Constrained Linear Program, a class of problem for which
a general closed form solution is not presently available. The following results state the well-
posedness and the convexity of our problems.

Proposition 4.3.1. Given ε > 0, Problem (4.3.1) is well-posed and its feasible region is a non-
empty, compact, and convex set.

The proof is given in Appendix 4.8.2.

Proposition 4.3.2. Problems (4.2.6) and (4.2.7) are well-posed. Moreover, for any c ∈ [ πε, πε ]
there exists F̃ ∈Mε(F ) such that πF̃ = c.

The proof follows immediately from Proposition 4.3.1. Since in Problem (4.3.1) we are looking
for the minimum of a convex function over a convex set, Problem (4.3.1) can be classified as a
convex problem.

Remark 4.3.1. Numerical solutions to Problem (4.3.1) (and therefore to Problems (4.2.6) and
(4.2.7)) and its optimizing distribution can be easily obtained. We remind the reader that for a
convex problem, any local minimum is a global minimum and there exist many efficient algorithms
to obtain numerical solutions for this class of optimization problem. See Boyd and Vandenberghe
(2004).
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As for any procedure based on an optimization problem, it is important that small perturbations
of one constraint (in our case, for example, the radius for the L2-ball) do not significantly affect the
solutions. See for example Escobar and Pflug (2020) for a detailed study of continuity of distortion
risk measures with respect to the Wasserstein distance. In the following proposition, we ensure the
continuity of premium bounds with respect to the L2 distance constraint.

Proposition 4.3.3 (Continuity of premium bounds). Given ε > 0, let πε and πε be defined as in
(4.2.6) and (4.2.7). Then, the mappings

ε 7→ πε and ε 7→ πε (4.3.2)

are concave and convex, respectively, and thus continuous.

The proof of Proposition 4.3.3 is given in Appendix 4.8.3. Let us make the following two
observations on the solutions to Problem (4.3.1). First, when ε is “too big”, the L2 distance con-
straint in Problem (4.3.1) may be redundant and in this case the optimizing distribution function is
a degenerate distribution, i.e., a distribution concentrating all probability mass in one point, which
is clearly not acceptable for applications in the life insurance context. Hence, in Proposition 4.3.4
we derive a sufficient condition on ε that prevents this situation. Second, we focus on certain cases
in which it is possible to derive an explicit analytic expression for the optimizing distribution of
Problem (4.3.1), and this is done in Theorem 4.3.6.

Proposition 4.3.4. Let f > 0. Then, an optimizing distribution of Problem (4.3.1) is a degenerate
probability distribution if and only if

ε > min
h∈Hy

min

h−1∑
j=0

F 2
j +

ω−x∑
j=h

(Fj − 1)2, (4.3.3)

withHy
min = {h ∈ H | yh = ymin}, where ymin = min{y0, y1, ..., yω−x}.

The proof is given in Appendix 4.8.4. Proposition 4.3.4 provides a sufficient and necessary
condition on ε such that the probability distributions attaining the bounds in (4.2.6) and (4.2.7) are
not degenerate. We underline that asking that no degenerate distribution belongs to the feasible
set Mε(F ) is a strictly stronger condition than the one in the statement of Proposition 4.3.4. In
what follows, we present a case in which the solution is not degenerate and we can derive an
explicit formula. This can be useful for example to check that the numerical solutions to Problem
(4.3.1) are accurate in these cases. In order to derive this analytical expression, we need some
conditions regarding the reference distribution F (or, equivalently, on the reference probability
distribution f ) and the feasible distributions functions of Problem (4.3.1). However, we do not
need any assumption on y or, equivalently, on the payoff function g. First, we need a lemma.

Lemma 4.3.5. Let f > 0. Then, there exists ε such that any feasible probability distribution of
Problem (4.3.1) satisfies q > 0, i.e., h|1qx > 0 for all h ∈ H. In particular, q > 0 holds for any

ε ∈
(

0, min
{
f
2
h

2

∣∣∣ h = 0, 1, ..., ω − x
})

.
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The proof is given in Appendix 4.8.5. Lemma 4.3.5 gives us a sufficient condition on ε such
that the assumptions in the next theorem are satisfied. In particular, if f > 0 (i.e. fh > 0

for h = 0, 1, ..., ω − x), one can simply choose ε < min
{
f
2
h

2

∣∣∣ h = 0, 1, ..., ω − x
}

and the
assumptions of Theorem 4.3.6 are satisfied. This theorem implies that if ε is small enough, the
distribution attaining the bounds in Problems (4.2.6) and (4.2.7) are unique and admit a closed-
form representation.

Theorem 4.3.6. Let f > 0 and ε > 0 such that any feasible probability distribution satisfies
q > 0. Then, the optimizing distribution of Problem (4.3.1) is unique and given by the vector q∗

obtained as

0|1q
∗
x = f0 +

y1 − y0
2λ∗

,

h|1q
∗
x = fh +

yh−1 − 2yh + yh+1

2λ∗
for h = 1, 2, ..., ω − x− 1,

ω−x|1q
∗
x = fω−x +

yω−x−1 − yω−x
2λ∗

.

(4.3.4)

where λ∗ =

√∑ω−x−1
h=0 (yh+1−yh)

2

4ε
. Furthermore, q∗ satisfies d(q∗, F ) =

√
ε.

The proof is given in Appendix 4.8.6. Theorem 4.3.6 provides an explicit formula for the
minimizing distribution of Problem (4.3.1). Furthermore, under the assumptions of Theorem 4.3.6,
the distributions attaining the bounds in Problems (4.2.6) and (4.2.7) are unique and have the
maximal L2 distance admissible from the reference probability distribution.

To give an example, consider an endowment insurance in which the amount Ch will be paid
at time h to the beneficiaries if the insured dies between time h − 1 and h, where h 6 m and m
denotes the policy term. The amount S will be paid at time m to the beneficiaries if the insured is
alive at that time. The payoff function of this contract writes as

g(h) =

{
Ch+1(1 + r)−(h+1) , if h < m

S(1 + r)−m , if h > m.

Under the assumption of Theorem 4.3.6, we can find the probability distribution solving Problem
(4.2.6) by using formula (4.3.4) with yh = −g(h), for h ∈ H. The following two remarks complete
this section.

Remark 4.3.2. (How to choose ε?)
The value of ε reflects the level of ambiguity regarding the curtate residual lifetime distribution.

One practical method that can be used to choose a specific value of ε is the following. Consider the
case in which the reference distribution F is estimated but there is also a finite set of alternative
candidate distributions that are deemed reasonable. In this situation, one can compute the L2 dis-
tance between the reference distribution and each other candidate and set

√
ε equal to maximal L2

distance observed. This procedure ensures that all other distributions deemed reasonable belong
to the ambiguity setMε(F ).
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Remark 4.3.3. (Further fields of application.)
The aim of this remark is to underline that the results obtained so far to compute the bounds

of the net premium can also be used to compute the bounds of other functionals of the residual
lifetime Kx.

• Stop-loss premium bounds. So far, we have considered premiums computed using the equiv-
alence principle (Definition 4.2.1). Another well-established premium principle in the actu-
arial literature is the stop-loss premium. For an introduction and properties of the stop-loss
premium and the related stop-loss order, see for example Kaas (1993). If d ∈ R and g(Kx)
is the random payoff of the contract, then we denote with πd the stop-loss premium with
threshold d, i.e.,

πd = E
(
(g(Kx)− d)+

)
, (4.3.5)

where (g(Kx)− d)+ = max (g(Kx)− d, 0) . Clearly, πd can be seen as the expected value
of t(Kx) where t(·) = max (g(·)− d, 0) is a deterministic function of Kx. Thus, the bounds
of πd can be computed and studied using the results obtained in Section 4.3.

• Robust expected discounted utility. Consider an individual who aims to buy an annuity but
has to decide which payment structure is the best. Let b = (b0, b1, ..., bω−x) be the vector that
identifies the payment structure of an annuity, i.e., for h = 1, 2, ..., ω−x, bh is the amount that
is paid at policy anniversary h, while b0 can be set equal to −π where π is the premium that
the insurance company charges for this annuity. The standard tool adopted in the economic
theory of inter-temporal choices to compare consumption plans (such as annuities) is the
expected discounted utility. See for example the seminal paper of Yaari (1965) and the
stream of literature that followed. Since here we are comparing insurance contracts that
offer payments only at policy anniversary h for h ∈ {0, 1, 2, ..., ω − x}, the value of the
discounted utility at time h for an annuity with payment structure b = (b0, b1, ..., bω−x) can
be written as

Db(h) =
h∑
j=0

t(j)u(bj), (4.3.6)

where u(·) is the utility function describing the individual preferences and t(·) is the sub-
jective discount function. Thus, the expected discounted utility of an annuity with payment
structure b becomes

E(Db(Kx)) = E

(
Kx∑
j=0

t(j)u(bj)

)
=

ω−x∑
h=0

h|1qx

h∑
j=0

t(j)u(bj). (4.3.7)

Observe that the function Db(·) is merely a deterministic function of Kx. Hence, if the am-
biguity regarding the distribution of Kx is described using L2-balls, all the results obtained
in this section can be used to derive the bounds of the expected discounted utility in (4.3.7),
regardless of the characteristics of the subjective discount function t(·) and of the utility
function u(·). A well-established result in decision theory under ambiguity is that an ambi-
guity adverse decision maker should choose the option that maximizes her expected utility
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under the worst-case scenario. This was proven in a decision theoretic setting in the seminal
paper of Gilboa and Schmeidler (1989). See for example d’Albis and Thibault (2012) for a
discussion of this approach in the context of the optimal annuitization problem. Being able to
compute upper and lower bounds for the expected discounted utility can help an ambiguity
averse decision maker to choose which insurance contract is optimal for her.

Specifically, given an ambiguity set F and a set S of possible payment structures, an ambi-
guity adverse decision maker with a utility function u(·) and a subjective discount function
t(·) faces the following problem:

max
b∈S

min
Kx∼F̃ , F̃∈F

E(Db(Kx)). (4.3.8)

If the ambiguity set F is described using an L2-ball built around a reference distribution and
if the set S of considered payment structures is finite, then our results can be used to compute
minKx∼F̃ ,F̃∈M E(Db(Kx)) for all b ∈ S and the solution of (4.3.8) can then be found.

4.4 Examples of robust assessment for annuities
In this section we propose several numerical examples that illustrate how the results obtained in
Section 4.3 can be used to obtain a robust assessment of annuities.

In the following examples, the reference probability distribution F of Kx is Binomial(n, p),
with n = ω−x+1. Unless otherwise specified, the parameters adopted in the numerical examples
are taken from Table 4.1.

Table 4.1: Parameters used in the numerical examples.

r x ω p
0.025 65 120 0.35

4.4.1 Standard annuity
The first case considered is a standard (paid in advance) whole life annuity, paying 1 euro per
year as long as the insured is alive. Assuming a constant interest rate r, the corresponding payoff
function g(h) is given as

g(h) =

{
0 , if h = 0

ah , if h = 1, 2, ..., ω − x,
(4.4.1)

where ah =
∑h

j=1(1 + r)−j, and the net premium writes as π = E (g(Kx)) =
∑ω−x

h=1 ah h|1qx.
The premium upper and lower bounds are displayed in Figure 4.1. Here we find a numerical

confirmation of what was anticipated in Proposition 4.3.1, which states that the premium upper
bound is convex with respect to ε while the lower bound is concave.

Figure 4.2 shows the evolution of the probability distribution for Kx attaining the premium
upper bound corresponding to various levels of ε. Clearly, the worst-case distribution is obtained by



88 Robust assessment of life insurance products

Figure 4.1: Premium bounds with respect to ε, for ε varying between ε = 0 and ε = 0.3. The dashed line
describes the premium level computed using the reference distribution. The black lines represents the upper
and lower bounds corresponding to each value of ε. The annuity payoff function is given in (4.4.1). The
other parameters are taken from Table 4.1.
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moving as much probability mass as possible from early to late ages, in particular to the maximal
attainable age. The reason behind this shape is that we are maximizing the expected value of an
increasing payoff function taking its highest value in ω − x (corresponding to the case in which
the insured reaches the maximal attainable age ω). Note that the distributions reported in Figure
4.2 appear to be somewhat odd. On the one hand, this is due to the fact that we are adopting a

Figure 4.2: Worst-case probability distribution for Kx. The annuity payoff function is given in (4.4.1). The
parameters of the reference probability distribution and the interest rate are reported in Table 4.1.
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non-parametric approach: we describe uncertainty using a probability metric and hence we do not
force the solution to belong to a certain parametric model. The use of a non-parametric approach
is justified when the actuary is willing to consider the possibility that future mortality could exhibit
some features that standard parametric models are not able to take into account. The distributions
displayed in Figure 4.2 correspond to the worst-case scenario in this setup. On the other hand, the
graphs in Figure 4.2 can have the following interpretation. By fixing ω, the actuary is essentially
fixing the maximal age she believes an insured can reach. Figure 4.2 is then suggesting that this
biological bound will not be overcome, but, as worst case scenario, this maximal age could be
reached by a higher share of the portfolio population, for example thanks to medical and quality
of life improvements. This observation is a direct consequence of our assumption to set to ω the
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maximal attainable age.
Nonetheless, in Section 4.5 we illustrate how an additional unimodality constraint on the set of

feasible distributions can be useful in those situations in which the actuary does not deem realistic
to have a high probability mass concentrated at the maximal attainable age.

Figure 4.3 looks at the worst-case probability distribution of Kx from another point of view.
Interestingly, as ε increases, the survival function moves toward a rectangular shape. The sur-
vival function rectangularization is a well-know phenomenon in actuarial science, illustrated for
example in Pitacco et al. (2009).

Figure 4.3: Worst-case survival function of Kx. The annuity payoff function is given in (4.4.1). The
parameters of the reference probability distribution and the interest rate are reported in Table 4.1.
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We now fix the ambiguity set (reference distribution and radius of L2-ball are given) and we
study the model risk as a function of the interest rate r. The measure of model risk we adopt here
is defined as

MR =
πε − πε
πF

, (4.4.2)

where πF is the net premium computed using the reference distribution F . The quantity MR
in (4.4.2) is sometimes called the normalised length of the bounds and is a standard tool in the
model risk literature to assess the robustness of a risk measure under distributional uncertainty.
See for example Barrieu and Scandolo (2015) and Bernard et al. (2020b) for an introduction to this
concept and practical examples. Figure 4.4 displays the MR for several values of the interest rate
r. Note that a change in the interest rate r implies a change for the payoff function g in (4.4.1)
and thus leads to different values of πε, πε, and πF . Clearly, this graph displays a decreasing
relationship between model risk (MR) and the interest rate r. In the case considered, a higher
interest rate implies an increasing robustness for the annuity premium with respect to changes
in the underlying residual lifetime distribution. This observation is in line, for example, with the
conclusions of Rabitti and Borgonovo (2020), where the authors investigate the relative importance
of mortality and financial components on annuity premiums using a sensitivity analysis approach.



90 Robust assessment of life insurance products

Figure 4.4: Model risk as defined in (4.4.2) with respect to r, for r varying between 0.015 and 0.1.
Given ε = 0.1, for each value of the interest rate r, we compute the length of the normalized bounds as
defined in (4.4.2). The annuity payoff function is given in (4.4.1). The other parameters are taken from
Table 4.1.
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4.4.2 Comparison of annuities with different payment structure
To conclude this numerical section, we provide an example of how our results can be used to com-
pare the robustness of an annuity net premium under different payment structures. In particular,
we compare the annuity with constant payments in (4.4.1) with annuities having arithmetically
increasing payments that, under the reference probability distribution F , have the same net pre-
mium. This comparison is conducted on two levels. First, in Figure 4.5 we compare the robustness
of the net premium of these contracts with respect to ambiguity. Second, in Figure 4.6 we com-
pare these payment structures using the robust expected discounted utility approach described in
Remark 4.3.3. Assuming a constant discounting interest rate r, the payoff function of an annuity
with arithmetically increasing payments with initial payment b and rate of increase α is given as

gb,α(h) =

{
0 , if h = 0∑h

j=1 b(1 + (j − 1))α (1 + r)−j , if h = 1, 2, ..., ω − x.
(4.4.3)

Table 4.2: Parameters of arithmetically increasing payments. The parameters b and α are fixed in a
way such that the net premium of the annuities with a payoff function as in (4.4.3) in Cases 1-4 coincides
with the net premium of the annuity with constant payments (4.4.1), using the reference distribution from

Table 4.1.

Case 1 Case 2 Case 3 Case 4
b 0.5389 0.7003 0.8238 0.9212
α 0.100 0.050 0.025 0.010

Figure 4.5 shows that, in the case considered, the net premium of the constant annuity is more
robust with respect to model risk. The net premium computed with the reference distribution will
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Figure 4.5: Upper and lower bounds for the net premium of annuities with arithmetically increasing pay-
ments as a function of ε. The payoff function for this class of annuities is given in (4.4.3). The parameters
that identify the payment structure of Cases 1-4 are reported in Table 4.2.
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be the same for all these contracts, but the annuity with constant payments exhibits an upper bound
for the expected losses that is always lower than in the case of arithmetically increasing payments.

From the point of view of the insured, a comparison of these different payment structures can
be obtained using the robust expected discounted utility method described in Remark 4.3.3. In
particular, we assume that the preferences of the policyholder can be described by an exponential
utility function u(x) = 1 − e−xa in which a > 0 is the risk aversion coefficient. Moreover, we
consider the case of a constant subjective discount factor 0 < v < 1, which allows us to write the
subjective discount function in the form t(h) = vh for h = 0, 1, 2..., ω − x. Figure 4.6 displays
the bounds for the expected discounted utility given in (4.3.7) as a function of the ambiguity level
ε. Observe that for all levels of ε considered, Figure 4.6 shows that the annuity with constant
payments is the one leading to the highest lower bound for the insured’s expected discounted utility.
Figures 4.5 and 4.6 suggest that, at least for the specific cases under consideration, the annuity
with constant payments is preferred to the annuities with arithmetically increasing payments if
both insurer and insured are ambiguity adverse.

4.5 Unimodality constraint

The goal of this section is to show that the framework we developed is flexible enough to accom-
modate further constraints on the structure of the probability distribution of Kx, i.e., on P (Kx =
h) = h|1qx for h = 0, 1, ..., ω − x, without impairing the bounds’ numerical tractability. This is
done by considering an additional mode preserving constraint on the set of feasible distributions.
In the life insurance context, the mode of the residual life time distribution is sometimes referred as
the Lexis point (Pitacco et al. (2009)). An unimodality constraint is not new in the literature related
to risk bounds. Li et al. (2018) and Bernard et al. (2020a) derive moment bounds on VaR under a
unimodality constraint. However, to the best our knowledge, our study is the first to consider an
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Figure 4.6: Bounds for expected discounted utility of annuities given in (4.3.7) with respect to ε. The
risk aversion parameter of exponential utility is a = 2 and constant subjective discount factor is v = 0.97.
The payoff function for this class of annuities is given in (4.4.3). The parameters that identify the payment
structure of Cases 1-4 are reported in Table 4.2.
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additional unimodality constraint when ambiguity is described using a probability metric. First,
let us introduce the definition of unimodality that we consider in this analysis.

Definition 4.5.1. (Keilson and Gerber (1971)) Given a discrete random variable X taking value
onH, we say that its distribution is unimodal if there exists at least one hm ∈ H (called the mode)
such that P (X = h) is non-decreasing for h = 0, 1, 2..., hm and P (X = h) is non-increasing for
h = hm, hm + 1, ..., ω − x.

For example, a random variable with a discrete uniform distribution on H is unimodal. Con-
sider now the case in which one is interested in finding the bounds for the net premium of an
insurance contract having a payoff function g, considering all distributions of Kx that satisfy an
L2 distance constraint from a reference distribution F and that additionally are unimodal with
mode equal to hm. The probability distributions attaining these bounds can be found by solving
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the following problem:

min
q

〈y, q〉 =
ω−x∑
h=0

yh h|1qx

subject to
ω−x∑
h=0

(
h∑
j=0

j|1qx − Fh

)2

6 ε,

ω−x∑
h=0

h|1qx = 1,

h|1qx > 0, h = 0, ..., ω − x,

h|1qx > h+1|1qx, h = hm, ..., ω − x− 1,

h|1qx > h−1|1qx, h = 2, ..., hm,

(4.5.1)

where the vector y = (y0, y1, ..., yω−x) can be defined as yh = −g(h) and yh = g(h) for h ∈ H in
order to derive the distributions that attain the upper and lower bound for E(g(Kx)), respectively.
The following proposition ensures that if the reference distribution is unimodal, an additional mode
preserving constraint does not affect the numerical tractability of the problem at hand.

Proposition 4.5.2. Let the reference distribution be unimodal with modal value hm and ε > 0.
Then, Problem (4.5.1) is well-posed and its feasible region is a non-empty, compact, and convex
set.

The proof of Proposition 4.5.2 follows from an argument that is similar to the proof of Propo-
sition 4.3.1 and thus is omitted. Figure 4.7 points out an interesting aspect regarding the solutions
to problems (4.3.1) and (4.5.1). If one compares Figure 4.7 to Figure 4.2, it is clear that the uni-
modality constraint can have an impact on the shape of the distribution attaining the upper bound.
In particular, this constraint on the modal value prevents the worst-case probability distribution
from having a high probability mass concentrated at maximal attainable age, a feature that we
observed in Figure 4.2. Thus, a unimodality constraint can be useful in those situations in which
probability distributions in the form represented in Figure 4.2 are not considered acceptable as
worst-case scenarios. It would be interesting to study whether it is possible to obtain solutions
for Problem (4.5.1) when the reference distribution is not unimodal or when one imposes a modal
value that does not coincide with that of the reference distribution, but we leave this issue to future
research.

4.6 Comparison with Pichler (2014)
Given a coherent risk measure %, Pichler (2014) studies the upper bound of the values that %(g(Kx))

2

can take when there is ambiguity regarding the distribution of Kx. In the present analysis we focus
on the upper and lower bounds on the expectation of g(Kx), meaning that we consider the simple

2Note Pichler (2014) denotes the payoff function using the symbol L, while we denote the payoff function using g.
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Figure 4.7: Worst-case probability distribution for Kx under L2 distance and unimodality constraints with
modal value at age 85. The annuity payoff function is given in (4.4.1). The reference probability distribution
parameters and the interest rate are reported in Table 4.1.
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case in which %(·) = E(·), and thus there is apparently an overlap between our analysis and that
of Pichler (2014). However, our approach is quite different from a methodological point of view.
The aim of this section is to point out some methodological differences and to list the advantages
of our set-up.

First, in the present analysis we assume that the residual lifetime Kx is a bounded random
variable; that is, there exists ω such that P (Kx 6 ω − x) = 1, while Pichler (2014) implicitly
assumes that Kx is unbounded from the right. We believe that our set-up is consistent with usual
practice, since the life-tables used by insurance companies typically consider only a finite number
of possible ages that an individual can reach.

Second, Pichler (2014) describes the ambiguity around a reference distribution using the Wasser-
stein distance, whereas we consider the L2 distance defined in (4.2.4). For any given p > 0, the
Wasserstein distance of order p between two distributions on the real line writes as

dWp
(F̃ , F ) =

(∫ 1

0

∣∣∣F̃−1(α)− F−1(α)
∣∣∣pdα) 1

p

. (4.6.1)

For p = 1, dW1
(F̃ , F ) coincides with the L1 distance between distribution functions, but corre-

spondence between Wasserstein distances of order p and Lp distances it is not true in general for
p 6= 1. Thus, even if one fixes the same reference distribution F and the same radius, the premium
bounds obtained using the Wasserstein distance or using the L2 distance do not coincide in general.

A priori, it is not clear which metric one should use to describe distributional uncertainty in
the context of life insurance pricing. See for example Chapter 3 in Rachev et al. (2008) for a
discussion of the characteristics of various probability metrics with financial applications. A main
advantage of our approach is that it makes the problem much more tractable from the numerical
and mathematical points of view.

From a mathematical point of view, Pichler (2014) obtains most of his results under the as-
sumption of Hölder continuity of the payoff function (see Definition 19 in Pichler (2014)), and the
bounds obtained in Theorems 20 and 22 require the computation of the Hölder constant. Observe
that the assumption of Hölder continuity needs to be verified case by case, and this can be difficult
if one has a non-constant term structure or a contract with non-constant payments. We do not make
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any assumption on the payoff function g(·), but we are still able to derive premium bounds and
analytic expressions of their attaining distributions (Theorem 4.3.6), and to prove that the premium
bounds are continuous with respect to the parameter ε (Proposition 4.3.3). This feature allows us,
for example, to extend the applicability of the results obtained in Section 4.3 to other contexts, as
in Remark 4.3.3.

From a numerical point of view, we show that with the L2 metric the bounds on the price can
be reformulated as an easy-to-solve convex problem, while Pichler (2014) states that computing
the bounds numerically using the Wasserstein distance requires solving an involved bilinear opti-
mization. Finally, in Section 4.5 we show that our approach is flexible enough to handle additional
constraints such as a constraint on the modal value, and this was not considered in Pichler (2014).
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4.7 Final remarks
In this Chapter we develop new tools that insurance companies can use to assess the impact of
model risk on the net premium of standard life insurance products. Our analysis focuses on those
situations in which uncertainty regarding future mortality trends is present and the net premium
is determined using the equivalence principle. We study the case in which the distributional un-
certainty regarding the underlying residual lifetime distribution is described via L2 distance. In
particular, the use of this metric makes it possible to reformulate the premium bounds’ problem
as a Quadratically Constrained Linear Program, which is numerically tractable (convex) and easy-
to-implement. We further study the properties of this linear program and show that in some cases
explicit formulas for the premium bounds and their attaining distribution functions can be obtained.
A numerical section illustrates how the results we obtain can be useful in assessing the robustness
of a life insurance contract from various points of view. Finally, we show that additional con-
straints, such as the important case of an unimodality restriction, can be easily incorporated into
our framework.
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4.8 Appendix

4.8.1 Proof of Proposition 4.2.2

Proof. Given an ambiguity set F,

1. Let F̃ ∈ F, g1(·) 6 g2(·) and Kx ∼ F̃ . Then, g2(Kx) is

first order stochastically larger than g1(Kx), see Definition 2.2.1 in Chapter ??. This implies
E(g1(Kx)) 6 E(g2(Kx)) for all F̃ ∈ F, which brings us to πF

g1
6 πF

g2
.

2. If g1(·) = c+ g2(·) with c ∈ R, then

πF
g1

= sup{E(g1(Kx)) : Kx ∼ F̃ , F̃ ∈ F} = sup{c+ E(g2(Kx)) : Kx ∼ F̃ , F̃ ∈ F}
= c+ sup{E(g2(Kx)) : Kx ∼ F̃ , F̃ ∈ F} = c+ πF

g2.

3. if g1(·) = λg2(·) with λ > 0, then

πF
g1

= sup{E(g1(Kx)) : Kx ∼ F̃ , F̃ ∈ F} = sup{λE(g2(Kx)) : Kx ∼ F̃ , F̃ ∈ F}
= λπF

g2.

4. if g(·) = αg1(·) + (1− α)g2(·) with α ∈ [0, 1] then,

πF
g = sup{αE(g1(Kx)) + (1− α)E(g2(Kx)) : Kx ∼ F̃ , F̃ ∈ F}
6 α sup{E(g1(Kx)) : Kx ∼ F̃ , F̃ ∈ F}+ (1− α) sup{E(g2(Kx)) : Kx ∼ F̃ , F̃ ∈ F}
= απF

g1
+ (1− α)πF

g2
.

4.8.2 Proof of Proposition 4.3.1

Proof. Let us denote with Dε the feasible region of Problem (4.3.1), i.e.

Dε = D1 ∩ D2 ∩ D3, (4.8.1)

where

D1 =

{
q ∈ Rω−x+1

∣∣∣ ω−x∑
h=0

(
h∑
j=0

j|1qx − Fh

)2

6 ε

}
, (4.8.2)

D2 =
{
q ∈ Rω−x+1

∣∣∣ etq = 1
}

with e = (1, 1, ..., 1), (4.8.3)

D3 =
{
q ∈ Rω−x+1

∣∣∣ q > 0
}
. (4.8.4)
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Observe that D2 ∩ D3 is clearly a convex and closed set. The set D1 is defined as the ε-sublevel

set of the function d2 : q →
∑ω−x

h=0

(∑h
j=0 j|1qx − Fh

)2
, which is the sum of ω − x + 1 functions

defined by

dh : Rh+1 → R, with dh(0|1qx, ..., h|1qx) =

(
h∑
j=0

j|1qx − Fh

)2

.

For any given h, the Hessian matrix of dh is a h+ 1 by h+ 1 matrix whose elements are all equal
to 2. It is thus a positive semidefinite matrix. Hence, all functions dh are convex, which means
that d2 is also a convex function of q. The continuity and convexity of d2 imply that its ε-sublevel
set D1 is closed and convex. To conclude, the feasible set Dε is obtained as the intersection of two
closed and convex sets and hence it is closed and convex. Since Dε is a subset of [0, 1]ω−x+1, Dε is
also bounded and therefore compact. Finally, Dε cannot be empty since the vector describing the
probability distribution induced by the reference df F always belongs to Dε.

Second, we prove that Problem (4.3.1) admits at least one solution. Note that in Problem
(4.3.1) we are looking for the minimum of the function q 7→ 〈y, q〉 that is linear with respect to q.
Therefore, the image of Dε through this function is a closed interval and hence there exists at least
one element in Dε that minimizes 〈y, q〉.

4.8.3 Proof of Proposition 4.3.3

Proof. To prove the statement, it is sufficient to show that the mapping ε 7→ 〈y, q∗ε〉 is convex,
where q∗ε is an optimizing distribution for Problem (4.3.1). Fix a reference distribution F, and let
Dε be defined as in (4.8.1). From Proposition 4.3.1, Dε is convex and compact for any ε > 0.
Observe that

〈y, q∗ε〉 = min
{
〈y, q〉

∣∣∣ q ∈ Dε}.
Fix now λ ∈ (0, 1), ε1 > 0 and ε2 > 0. Let us define the following set,

Dλε1,ε2 =
{
qλ

∣∣∣ qλ = λq1 + (1− λ)q2, q1 ∈ Dε1 , q2 ∈ Dε2
}
.

In Appendix 4.8.2 we showed that the function d2 : q →
∑ω−x

h=0

(∑h
j=0 j|1qx − Fh

)2
is convex,

and thus we have

d2(qλ, F ) 6 λd2(q1, F ) + (1− λ)d2(q2, F ) = λε1 + (1− λ)ε2.

It is then clear that Dλε1,ε2 ⊆ Dλε1+(1−λ)ε2 . Finally, we have

〈y, q∗λε1+(1−λ)ε2〉 = min
{
〈y, q〉

∣∣∣ q ∈ Dλε1+(1−λ)ε2

}
6 min

{
〈y, qλ〉

∣∣∣ qλ ∈ Dλε1,ε2}
= λmin

{
〈y, q1〉

∣∣∣ q1 ∈ Dε1}+ (1− λ) min
{
〈y, q2〉

∣∣∣ q2 ∈ Dε2}
= λ〈y, q∗ε1〉+ (1− λ)〈y, q∗ε2〉.
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4.8.4 Proof of Proposition 4.3.4

Proof. Consider the following optimization problem:

min
q

ω−x∑
h=0

yh h|1qx

subject to
ω−x∑
j=0

j|1qx = 1,

h|1qx > 0,∀h = 0, ..., ω − x.

(4.8.5)

Note that the solution of Problem (4.8.5) coincides with ymin, trivially. Furthermore, a degenerate
probability distribution attains the equality ymin =

∑ω−x
h=0 yh h|1qx if and only if h∗|1qx = 1 for one

h∗ ∈ Hy
min and h

∗|1qx = 0 for h 6= h∗. Thus, the number of degenerate probability distributions
solving Problem (4.8.5) coincides with the number of elements in Hy

min. Let us now denote with
qh∗ a degenerated probability distribution such that h∗|1qx = 1 and h|1qx = 0 for h 6= h∗. The
square of the L2 distance between the df of qh∗ and the reference distribution F is given by

d(qh∗ , F )2 =
h
∗−1∑
h=0

F 2
h +

ω−x∑
h=h

∗

(1− Fh)2.

It is then clear that if ε > minh∈Hy
min

∑h−1
j=0 F

2
j +

∑ω−x
j=h (Fj − 1)2, then there exists h∗ ∈

Hy
min such that qh∗ belongs to the feasible set of Problem (4.3.1), and thus Problem (4.3.1) admits

degenerate solutions.
We shall now prove that if ε < minh∈Hy

min

∑h−1
j=0 F

2
j +

∑ω−x
j=h (Fj − 1)2, a solution of Problem

(4.3.1) cannot have all probability mass concentrated in one point. Consider h∗ in H \ Hy
min, and

consider the distribution qh∗ such that h∗|1qx = 1 and h|1qx = 0 for h 6= h∗. Let y∗ = 〈y, qh∗〉.
Assume that qh∗ is a distribution attaining the minimum of Problem (4.3.1), and thus d(qh∗ , F ) 6
ε. Fix now h̃ ∈ Hy

min.

First, we focus on the case where h̃ > h∗. Consider the distribution q̃ such that

h|1q̃x = 1− δ, for h = h∗,

h|1q̃x = δ, for h = h̃,

h|1q̃x = 0, elsewhere,

with 0 < δ < 1. Since h̃ ∈ Hy
min, it is clear that 〈y, q̃〉 < 〈y, qh∗〉. Fix δ =

1−Fω−x−1

2
, so that

0 < 1− δ − Fh < 1− Fh holds for any h 6 ω − x− 1. Since f > 0 and δ is strictly positive, we
have
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d(q̃, F )2 =
h
∗−1∑
h=0

F 2
h +

h̃−1∑
h=h

∗

(1− δ − Fh)2 +
ω−x∑
h=h̃

(1− Fh)2

<
h
∗−1∑
h=0

F 2
h +

ω−x∑
h=h

∗

(1− Fh)2 = d(qh∗ , F )2 6 ε.

Thus, q̃ belongs to the feasible set of Problem (4.3.1) and leads to a strictly lower value of the
objective function. This shows that the degenerate distribution qh∗ cannot be a solution of Problem
(4.3.1).

Let us now consider the case h̃ < h∗. Again, we define the distribution q̃ such that

h|1q̃x = 1− δ, for h = h∗,

h|1q̃x = δ, for h = h̃,

h|1q̃x = 0, elsewhere.

with 0 < δ < 1. Since h̃ ∈ Hy
min, it is clear that 〈y, q̃〉 < 〈y, qh∗〉. Fix δ =

Fh̃
2

. Since f > 0 and δ
is strictly positive, we have

0 < Fh − δ < Fh =⇒

(
h∑
j=0

h|1q̃x − Fh

)2

= (Fh − δ)2 < F 2
h , for h̃ 6 h < h∗ − 1.

Thus,

d(q̃, F )2 =
h̃−1∑
h=0

F 2
h +

h
∗−1∑
h=h̃

(Fh − δ)2 +
ω−x∑
h=h̃

(1− Fh)2

<

h
∗−1∑
h=0

F 2
h +

ω−x∑
h=h

∗

(1− Fh)2 = d(qh∗ , F )2 6 ε.

Thus, q̃ belongs to the feasible set of Problem (4.3.1) and leads to a strictly lower value of the
objective function. This shows that a degenerate distribution qh∗ cannot be a solution of Problem
(4.3.1).
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4.8.5 Proof of Lemma 4.3.5

Proof. Let f > 0 and q be a probability distribution such that there exists k ∈ H for which
h|1qx = 0. Then, d(q, F )2 > ε∗ with

ε∗ = min
z

ω−x∑
h=0

(
h∑
j=0

zj − Fh

)2

subject to z ∈ Rω−x+1,

zk = 0.

(4.8.6)

Assume 0 < k < ω− x. In order to solve (4.8.6), we adopt the standard Lagrangian multiplier
method with a Lagrangian function defined as

L(z, λ) =
ω−x∑
h=0

(
h∑
j=0

zj − Fh

)2

− λ (zk − 0) . (4.8.7)

After differentiating with respect to zh, we get the following system of equations:{∑ω−x
h=i

∑h
j=0 zj =

∑ω−x
h=i Fh, for i 6= k,∑ω−x

h=k

∑h
j=0 zj =

∑ω−x
h=k Fh −

λ
2
.

(4.8.8)

The system in (4.8.8) is a system of linear equations. It can thus be solved using a standard
substitution method, which leads to the following solution:

zi = fi, for i 6= k − 1, k, k + 1,

zi = fi − λ
2
, for i = k − 1, k + 1,

zk = fk + λ.

(4.8.9)

To satisfy the constraint in (4.8.6), we get λ = −fk. At this point we can easily compute the
solution of (4.8.6), which is ε∗ = f

2
k

2
. Thus, if the value of ε in Problem (4.3.1) is lower than f

2
k

2
, no

feasible distribution can satisfy k|1qx = 0. Using a similar argument, one can show that if k = 0 or

k = ω − x, the solutions of (4.8.6) are ε∗ =
f
2
ω−x
2

and ε∗ = f 2
0 , respectively.

4.8.6 Proof of Theorem 4.3.6

Proof. Recall that from Proposition 4.3.1 we know that Problem (4.3.1) admits at least one op-
timizing distribution. First, we show that if f > 0 and ε is such that any feasible probability
distribution satisfies q > 0, then an optimizing distribution q∗ of Problem (4.3.1) must satisfy
d(q∗, F )2 = ε. Let q be a feasible distribution such that d(q, F )2 < ε. Fix hmin in Hy

min, h̃ in
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H \Hy
min, and let us define q∗ as follows:

hmin|1q
∗
x = hmin|1qx + δ,

h̃|1q
∗
x = h̃|1qx − δ,

h|1q
∗
x = h|1qx, for h 6= hmin, h̃.

Observe that for any δ > 0, we have 〈y, q∗〉 < 〈y, q〉. Clearly, d(q∗, F )2 is a continuous function
of δ and for δ = 0 we have d(q∗, F )2 = d(q, F )2 < ε. Thanks to the continuity of d(q∗, F )2

w.r.t. δ, we know that there exists δ > 0 such that d(q∗, F )2 6 ε. This implies that q can not be
an optimizing distribution for Problem (4.3.1). Thus, any optimizing distribution must have the
maximal L2 distance from the reference distribution.

Second, we look for the optimizing distributions of Problem (4.3.1) by means of KKT condi-
tions. This is justified by the fact that Problem (4.3.1) has differentiable objective and constraint
functions. Slater’s conditions are satisfied since the reference probability distribution f is strictly
feasible in that f has strictly positive probabilities by assumption and d (f , F )2 = 0 < ε. Thus,
strong duality holds. As a consequence, any optimizing distribution of Problem (4.3.1) must satisfy
the KKT conditions. Moreover, from Proposition 4.3.1 we know that Problem (4.3.1) is convex
and therefore we conclude that a feasible point is an optimizing distribution of Problem (4.3.1) if
and only if it satisfies the KKT conditions. For a detailed explanation of Slaters’s condition, strong
duality, and KKT conditions we refer to Boyd and Vandenberghe (2004), sections 5.2.3 and 5.5.3,
respectively. The KKT conditions of Problem (4.3.1) write as follows:

1. d(q∗, F )2 − ε 6 0,

2.
∑ω−x

h=0 h|1q
∗
x = 1,

3. h|1q
∗
x > 0, for h = 0, 1, ..., ω − x,

4. λ∗ > 0,

5. ν∗h > 0, for h = 0, 1, ..., ω − x,

6. λ∗
(
d(q∗, F )2 − ε

)
= 0,

7. h|1q
∗
x ν
∗
h = 0, for h = 0, 1, ..., ω − x,

8. ∇q
∗L (q∗, λ∗, µ∗,ν∗) = 0,

where L (q, λ, µ,ν) is the Lagrangian function corresponding to Problem (4.3.1),

L (q, λ, µ,ν) =
ω−x∑
h=0

yh h|1qx+λ

ω−x∑
h=0

(
h∑
j=0

j|1qx − Fh

)2

− ε

+µ

(
ω−x∑
h=0

h|1q
∗
x − 1

)
+
ω−x∑
h=0

h|1qx νh.

(4.8.10)
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and the KKT condition 8 is obtained by equating to 0 the following partial derivatives,

∂L (q, λ, µ,ν)

∂i|1qx
= yi + 2λ

(
ω−x∑
h=i

(
h∑
j=0

j|1qx − Fh

))
+ µ+ νi

= yi + 2λ

(
ω−x∑
h=i

h∑
j=0

j|1qx

)
+ 2λ

ω−x∑
h=i

Fh + µ+ νi.

Hence, for any given λ, µ and ν we can write the system of equations ∇qL (q, λ, µ,ν) = 0 in the
following compact form

y + 2λ (Mq − Fcum) + µ+ ν = 0 (4.8.11)

where Fcum is the column vector such that Fcum(k) =
∑ω−x

h=k Fh, for k = 0, 1, ..., ω−x and M is a
ω−x+ 1×ω−x+ 1 symmetric matrix whose components are M(k, j) = ω−x+ 2−max(k, j),
for k, j = 1, 2, ..., ω − x + 1. Using the standard Gauss Algorithm, one can easily check that M
has full rank, and hence it is an invertible matrix and we deduce that the system of equations in
(4.8.11) has a unique solution in the form

q∗ = M−1
(
Fcum −

y + µ+ ν

2λ

)
. (4.8.12)

After some calculations, we find

0|1q
∗
x = f0 +

y1 − y0 + ν1 − ν0
2λ∗

,

h|1q
∗
x = fh +

yh−1 − 2yh + yh+1 + νh−1 − 2νh + νh+1

2λ∗
for h = 1, 2, ..., ω − x− 1,

ω−x|1q
∗
x = fω−x +

yω−x−1 − 2yω−x + νω−x−1 − 2νω−x − µ
2λ∗

.

At this stage, we just need to find the values of λ, µ, and ν that satisfy KKT conditions 1-7.

First, ν: since we are considering a case in which any feasible point must satisfy q > 0, the
constraints in the form h|1qx > 0 cannot be active at the optimal point, and therefore in our problem
KKT conditions 3, 5, and 7 are satisfied if and only if ν = 0.

Second, µ: observe that
∑ω−x

h=0 h|1q
∗
x =

∑ω−x
h=0 fh + −yn−µ

2λ
. Hence, to satisfy the KKT condition

2 we need
ω−x∑
h=0

h|1q
∗
x = 1 ⇐⇒ µ∗ = −yn.

Third, λ: we have already shown that any optimizing distribution of Problem (4.3.1) must
satisfy d(q∗, F )2 − ε = 0. This constraint is therefore active at the solution, and we just need to
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find the corresponding λ > 0. Using the previous results on ν∗ and µ∗ we have

d(q∗, F )2 = ε ⇐⇒
ω−x∑
h=0

(
h∑
j=0

j|1q
∗
x − Fh

)2

= ε

⇐⇒
ω−x∑
h=0

(
h∑
j=0

(
fj +

cj
2λ

)
− Fh

)2

= ε

⇐⇒
ω−x∑
h=0

(
h∑
j=0

cj
2λ

)2

= ε

where
∑h

j=0 cj = yh+1−yh for h = 0, 1, ..., ω−x−1 and
∑ω−x

j=0 cj = 0. We conclude that the only

λ that satisfies both condition 1 and condition 4 is λ∗ =

√∑ω−x−1
h=0 (yh+1−yh)

2

4ε
, which completes the

proof.



Chapter 5

Discussion and outlook

The results obtained in this thesis can be extended in several directions. In Chapter 2, we derived
quite general sufficient conditions on the joint distribution of the asset returns leading to a two-
and three-fund separation theorem, under the sole assumption that the investor’s preferences are
consistent with the first-order stochastic dominance rule. Moreover, we discuss the implications
of these results for portfolio optimization problems. Note that when the asset returns distribution
is determined by two parameters (location-scale) we obtained a two-fund theorem, and when it is
a function of three parameters (location-scale mixture) a three-fund separation holds. Therefore,
it would be interesting to study a similar problem under more general distributional assumptions,
and verify for example if a distributional assumption involving four parameters leads to a four-
fund theorem. The general idea would be to establish if there exists a link between the number
of parameters used to identify the asset returns distribution and the number of market funds in
which the investor should allocate her initial wealth. Regarding our distributional assumptions,
an additional level of generalization could be reached by studying the case in which the joint
distribution of the asset returns is not completely specified. The stream of literature related to this
class of problems goes by the name of robust portfolio selection; see Kim et al. (2014) and Xidonas
et al. (2020) for a review of this research line. A first result linking the fund separation theorems
with robust portfolio selection was obtained in Baviera and Bianchi (2021). These authors studied
the portfolio optimization problem of a mean-variance investor assuming that the joints distribution
of the asset returns belongs to an ambiguity set obtained by considering all joint distributions that
satisfy a Kullback-Leibler divergence constraint from a joint Gaussian distribution, and obtained a
closed-form formula for the worst-case optimal portfolio that exhibits a three-fund separation. In
future investigations, it might be possible to extend this result under more general conditions on
the investor’s objective function and on the benchmark joint distribution.

Another aspect that could be further investigated is the following. It is well-known that when
the joint distribution of the asset returns is Gaussian, for each mean-variance efficient portfolio
there exists an expected utility investor for which this portfolio is optimal. See Sargent (1987)
pages 154-155 for a proof. It would be interesting to see if this result still holds for the “mean-
skewness-variance" efficient frontier we derived in Chapter 2, under the location-scale mixture
assumption for the returns joint distribution.

In Chapter 3, we studied how the knowledge of a dependence measure can affect the (Range)
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Value-at-Risk bounds, with respect to the case in which no dependence information is given, under
the assumption that the risks’ marginal distributions are known. In particular, we showed that a
constraint on a dependence measure such as Pearson correlation or Spearman’s rho may not be
effective when it comes to reducing the worst-case value of a tail-risk measure for the sum of
two risks. A similar conclusion holds for the sum of three or more risks when the dependence
information is summarized using the average correlation. In the case of the sum of two risks,
a natural progression of this work is to investigate if the best-possible VaR bounds given d /∈
[δmin, δmax] can still coincide with the bounds obtained in absence of any dependence information.
Further work needs to be done to establish how to compute best-possible (R)VaR bounds for an
arbitrary number of risks, assuming that the entire correlation matrix and the marginal distributions
are given. This problem seems mathematically very challenging, but the output of this research line
could give an important contribution to the debate about use of correlation matrices to set capital
requirements for banks and insurance companies. In wider terms, the identification of the sources
of partial dependence information that can be easily inferred from the available data but that are
also able to reduce risks bounds requires further work. The results obtained in the present thesis
suggest that summarising all dependence information in one number, e.g., the Spearman’s rho for
n = 2 or the average correlation for n > 3, may not be sufficient to have an improvement in term
of risk bounds. As mentioned before, having a full correlation matrix could give better results,
but it is possible to imagine other sources of dependence constraints. For instance, a positive tail
dependence constraint, for example upper corner comotonicity, seems to be a promising starting
point to obtain a reduction of the worst-case VaR.

A third possible extension of the results presented in Chapter 3 is to consider a risk aggregation
problem in which the marginal distributions are not completely given. Note that the assumption of
given marginal distributions is essentially omnipresent in the literature related to risk aggregation
under dependence uncertainty. Nonetheless, practical observations suggests that this hypothesis
can be challenged since also the estimation of the marginal distributions comes with a certain
level of uncertainty. A promising approach that could be adopted in order to solve these above
mentioned problems is to develop machine learning based numerical techniques. These numerical
techniques have proved to be a valid choice when it comes to tackle complex risk aggregation
problems for which a theoretical solution seems out of reach, as illustrated for example in Eckstein
et al. (2020).

Chapter 4 studies the bounds on the net premium of life insurance contracts, when the esti-
mated residual lifetime distribution is not fully trusted. Specifically, we provide a methodology
for deriving the upper and lower bound on the net premium of life insurance contracts given that
the residual lifetime distribution function lies in a certain neighbourhood (measured with the L2

distance) of a benchmark distribution function. The results obtained in Chapter 4 highlight the
convenience of using the L2 distance to describe distributional uncertainty in this context, in that
it allows to reformulate the premium bounds’ problem as numerically tractable linear program.
A numerical analysis illustrate how our results can be used also to solve robust expected utility
maximization problems and to measure the impact of distributional uncertainty on the net pre-
mium under various financial scenarios. In Chapter 4 we consider life insurance contracts having
fixed benefits, i.e., contracts in which the amount of benefits is stated at policy issue. Future re-
search should therefore try to extend the results we obtained to the case of life insurance contracts
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with varying benefits. This extension could include, for example, those contracts having benefits
that are adjusted to inflation or to the insurer investments performance, such as variable annuities.
This would require to consider the ambiguity regarding the joint distribution of the financial and
mortality components that determine the contract’s net premium.

Chapter 4 focuses on the net premium bounds of a life insurance contract under the assumption
that the net premium is computed according to the equivalence principle. This justifies the study
of the worst- and best-case scenarios for E(g(Kx)), assuming that the distribution of Kx is only
partially specified. Nonetheless, it would be of theoretical and practical interest to verify if it is
possible to obtain numerically tractable bounds for %(g(Kx)), where % is a given risk measure,
such as VaR or TVaR. This could extend the applicability of the results obtained in Chapter 4 to
the computation of the reserves that an insurer needs to allocate for an existing contract.

Finally, our analysis is focused on life insurance contracts, but it would be interesting to inves-
tigate if a similar approach can be adopted to study premium bounds for health insurance contracts.
For instance, one can wonder if the use of the L2 metric still allows to obtain numerically tractable
bounds for the net premium of a disability insurance cover when the estimated transition probabil-
ities among the active, disability and death states are not fully trusted.
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