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Abstract

The muon trigger system of the CMS experiment uses a combination of hardware and
software to identify events containing a muon. During Run 2 (covering 2015–2018)
the LHC achieved instantaneous luminosities as high as 2× 1034 cm−2 s−1 while de-
livering proton-proton collisions at

√
s = 13 TeV. The challenge for the trigger system

of the CMS experiment is to reduce the registered event rate from about 40 MHz to
about 1 kHz. Significant improvements important for the success of the CMS physics
program have been made to the muon trigger system via improved muon reconstruc-
tion and identification algorithms since the end of Run 1 and throughout the Run 2
data-taking period. The new algorithms maintain the acceptance of the muon triggers
at the same or even lower rate throughout the data-taking period despite the increas-
ing number of additional proton-proton interactions in each LHC bunch crossing. In
this paper, the algorithms used in 2015 and 2016 and their improvements throughout
2017 and 2018 are described. Measurements of the CMS muon trigger performance
for this data-taking period are presented, including efficiencies, transverse momen-
tum resolution, trigger rates, and the purity of the selected muon sample. This paper
focuses on the single- and double-muon triggers with the lowest sustainable trans-
verse momentum thresholds used by CMS. The efficiency is measured in a transverse
momentum range from 8 to several hundred GeV.
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1 Introduction
Muons feature prominently in many of the most important signatures studied at the CERN
LHC, including final states from b hadron, vector boson, and Higgs boson decays, as well as in
searches for new physics beyond the standard model. Since they are the only detectable par-
ticles to traverse the whole detector without significant loss of energy, muons are ideal probes
to identify interesting interactions among the large number of proton-proton (pp) collisions
provided by the LHC. The ability to reconstruct and identify muons with high efficiency and
precision while maintaining low misidentification rates is therefore crucial to the success of the
CMS physics program.

In the pp collisions, muons originate from a variety of processes. The dominant source is decay
in flight of pions and kaons, followed by semileptonic decays of b and c hadrons. Muons from
the decay of vector or Higgs bosons contribute less than 1% to the overall muon sample [1].

In Run 2 (years 2015–2018), the center-of-mass energy (
√

s) of the pp collisions delivered by
the LHC increased from 8 to 13 TeV. The small amount of data recorded in 2015 is disregarded
in the following. The peak instantaneous luminosity achieved during the data taking in Run
2 increased from 1.5× 1034 cm−2 s−1 in 2016 to 2.0–2.1× 1034 cm−2 s−1 in 2017 and 2018. The
average number of simultaneous pp interactions per bunch crossing (pileup) increased from 23
in 2016 to 32 in 2017 and 2018. However, because of two distinct beam configurations employed
during 2017, the pileup distribution exhibits a double peak structure with a secondary peak at
pileup ≈55. This posed a significant challenge to the CMS trigger system, which was tasked to
maintain acceptable event rates for storage and analysis in a pileup environment far in excess
of the design value of 20–25.

The trigger system comprises two levels [2]. The Level-1 (L1) trigger system consists of cus-
tom hardware processors that receive data from calorimeter and muon systems and reduce the
event rate from 40 MHz to about 100 kHz. The software-based high-level trigger (HLT) system,
which operates on a computing farm with up to 30 000 CPU cores (at the end of Run 2), further
reduces the rate to approximately 1 kHz. The algorithms and techniques used in these triggers,
both at L1 and HLT, evolved during the data taking.

The muon reconstruction in the HLT is split into two steps: the Level-2 (L2) reconstruction that
uses information from the muon detectors, and the Level-3 (L3) reconstruction that incorpo-
rates additional information from the inner tracking detectors. These reconstruction steps are
applied in sequence, followed by muon identification and isolation requirements, if applicable,
defining individual “triggers”. If all the requirements in a given trigger are fulfilled, the event
will be accepted by the trigger system. In this paper, we will focus on triggers requiring the
presence of either at least one (“single-muon trigger”) or two (“double-muon trigger”) muons
fulfilling certain transverse momentum (pT) requirements. These thresholds are chosen to con-
trol the rate of accepted events. Dedicated triggers targeting muons from low mass resonances
or requiring the presence of at least one muon in conjunction with other objects, such as elec-
trons or tau leptons, which also use the same muon reconstruction, are not discussed in this
paper. At both L1 and HLT, triggers can be prescaled, so that only a predefined fraction of
events fulfilling the trigger condition are accepted.

During Run 2, the L3 reconstruction algorithms were significantly improved with two objec-
tives in mind: maintaining a single-muon trigger with a pT threshold low enough to retain a
large fraction of W → µν decays, and extending the muon reconstruction to use the additional
pixel layers that were installed during the pixel detector upgrade [3] between the 2016 and 2017
data taking. Another consideration was to bring the trigger-level reconstruction closer to the
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offline one [4] by reducing the reliance on specialized code. With the improved algorithms, a
significant increase in the purity of the muon sample selected by the single-muon triggers was
achieved without a significant reduction in trigger efficiency.

In this paper, we summarize the reconstruction algorithms deployed in the HLT throughout the
data-taking period, focusing on the improvements made since the start of Run 2. The selection
and reconstruction efficiencies of the different levels of the trigger systems (L1, L2, and L3),
as well as the pT resolution for L2 and L3 muons, are presented. For the unprescaled single-
and double-muon triggers with the lowest pT thresholds sustainable at the full instantaneous
luminosity during Run 2, the overall performance of the muon trigger system is measured in
terms of the efficiency, covering a pT range from 8 to several hundred GeV. Additionally, the
impact of the algorithmic improvements on the purity of the selected muon sample, the event
processing time, and the trigger rate is discussed.

The description and performance of the muon trigger system used during Run 1 (years 2010–
2012), for both the L1 and the HLT, are presented in Ref. [2]. For Run 2, a detailed description of
the L1 trigger system and its performance is presented in Ref. [5]. The muon HLT performance
for muons with very high pT is included in Ref. [6]. This paper completes the documentation
of the CMS muon trigger system, as used during Run 2, with detailed studies of the HLT
performance for a more general selection of triggers.

This paper is organized as follows. Section 2 describes the CMS detector with a focus on the
subdetectors relevant for muon reconstruction. Section 3 describes the data used together with
a brief explanation of the efficiency measurement techniques. The hardware-based L1 trig-
ger system and its performance are discussed in Section 4. The L2 and the various L3 muon
reconstruction algorithms used in the HLT throughout the data taking are described in Sec-
tion 5. Section 6 presents the overall muon trigger system performance combining the full
L1–L3 chain, followed by a summary in Section 7.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detec-
tors. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke
outside the solenoid. A more detailed description of the CMS detector, together with a def-
inition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [7].

In the region |η| < 1.74, the HCAL cells have widths of 0.087 in both η and azimuth (φ). In the
η-φ plane, and for |η| < 1.48, the HCAL cells map onto 5×5 arrays of ECAL crystals to form
calorimeter towers projecting radially outwards from close to the nominal interaction point.
For |η| > 1.74 , the granularity of the towers increases progressively to a maximum of 0.174 in
∆η and ∆φ.

The silicon tracker measures the trajectories of charged particles within |η| < 2.5. During the
data-taking period in 2016, the silicon tracker consisted of 1440 silicon pixel and 15 148 sili-
con strip detector modules. They were arranged in concentric layers, three pixel and 10 strips,
around the beam axis in the central region of the detector, and in disks, two pixel and 12 strips,
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Figure 1: R-z quadrant of the CMS detector during Run 2. The proton beams travel along the z
axis and cross at the interaction point (0,0). The three CMS muon subdetectors typically have
four stations: DT in yellow, labeled MB; CSC in green, labeled ME; and RPC in blue, labeled
RB or RE.

perpendicular to it in the forward directions. For nonisolated particles (i.e., with no isolation
requirement applied) with 1 < pT < 10 GeV and |η| < 1.4, reconstructed using the full offline
event reconstruction, the track resolutions are typically 1.5% in pT and 25–90 (45–150) µm in
the transverse (longitudinal) impact parameter [8]. Before the data-taking period in 2017, an
upgraded pixel detector consisting of 1856 modules was installed, adding an additional barrel
layer closer to the interaction point and additional disks in the two forward parts of the detec-
tor [3]. With the upgraded detector, the transverse impact parameter resolution for nonisolated
particles of 1 < pT < 10 GeV and |η| < 2.5 improved to 20–75 µm [9].

Three types of gas-ionization chambers make up the CMS muon system: drift tube chambers
(DTs), cathode strip chambers (CSCs), and resistive-plate chambers (RPCs). The geometrical
arrangement of these three muon subdetectors in a quadrant of the CMS detector is shown in
Fig. 1. A detailed description of these chambers, including the gas composition and operating
voltage, is reported in Ref. [10]. The DTs are segmented into drift cells; the position of the muon
is determined by measuring the drift time to an anode wire of a cell with a shaped electric field.
The CSCs operate as standard multi-wire proportional counters but add a finely segmented
cathode strip readout, which yields a precise measurement of the position of the bending plane
(R-φ) coordinate at which the muon crosses the gas volume. The RPCs are double-gap cham-
bers operated in avalanche mode and are primarily designed to provide timing information
for the muon trigger. The DT and CSC chambers are located in the regions |η| < 1.2 and
0.9 < |η| < 2.4, respectively, and are complemented by RPCs in the range |η| < 1.9. The cham-
bers are arranged to maximize the coverage and to provide some overlap where possible. In
both the barrel and endcap regions the chambers are grouped into four “muon stations”, sep-
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arated by the steel absorber of the magnet return yoke. In the barrel region, the DT and RPC
stations are arranged in five wheels along the z direction.

The thickness of the detector in radiation lengths is greater than 25 X0 for the ECAL, and the
thickness in interaction lengths varies from 7-11 λ0 for HCAL depending on η. The material
depth, in radiation lengths, at the muon stations varies from 100 for the first muon station up
to 280 for the outermost muon station [11].

Muon trajectories are measured in the range |η| < 2.4, using detection planes comprised of the
three muon subdetectors in up to four muon stations. Using the full offline event reconstruc-
tion, the efficiency to reconstruct and identify muons is greater than 96%. Matching muons to
tracks measured in the silicon tracker results in a relative pT resolution, for muons with pT up
to 100 GeV, of 1% in the barrel and 3% in the endcaps. The pT resolution in the barrel is better
than 7% for muons with pT up to 1 TeV [4, 6].

3 Data samples and trigger efficiencies
The results described in this paper are based on the pp collision data collected during the
Run 2 of the LHC by the CMS experiment, corresponding to a total integrated luminosity of
137 fb−1 distributed as follows: 36 fb−1 (2016), 41 fb−1 (2017), and 60 fb−1 (2018). Because the
instantaneous luminosity of the LHC increased during the data taking, the average pileup in
the 2017 and 2018 data samples is about 40% higher than in the 2016 sample. For performance
measurements of the full trigger, all available data for each year are used. However, a fair
comparison of the algorithmic performance of the different steps of the reconstruction between
different years is difficult because of the continually evolving nature of the detector and the
trigger algorithms and configurations. For this reason, smaller data samples representing the
best detector performance of each year are chosen for these measurements. For 2016 and 2018,
the last 5 fb−1 of the data of the relevant year were used since they provide data sets with
stable and well understood detector conditions. For 2017, two different data sets are used.
For L1 and L2 algorithms that rely solely on the muon detectors, the last 5 fb−1 collected in
that year show the best performance. The later part of the 2017 data is affected by inactive
pixel detector modules caused by a powering issue related to radiation-induced damage in the
FEAST DC-DC converter ASICs [12], which affected about 7.5% of modules at the end of the
year. Therefore, a data set of 4 fb−1 from early in the data taking is used for L3 and isolation
performance measurements.

The selected data samples for most of the studies shown in this paper were recorded using a
single-muon trigger; they include events with a pair of reconstructed muons with a dimuon
invariant mass consistent with the Z boson resonance. Throughout this paper, efficiencies
with respect to offline muons are measured with Z → µµ data events using a “tag-and-
probe” (T&P) technique [13]. Pairs of muons reconstructed by the CMS offline event recon-
struction are selected, where at least one of the muons has to pass the strict “tag” criteria of
pT > 26 GeV, |η| < 2.4, and tight identification and isolation requirements. The identifica-
tion requirements are based on the number of hits in the tracker and muon systems associated
with the muon, the quality of the muon track fit and its impact parameters; the isolation re-
quirements are based on tracks and energy deposits in the calorimeters in the vicinity of the
muon [4]. The tag is also required to have passed an isolated single-muon trigger requirement
to ensure that the efficiency measurement remains unbiased. The other muon is considered the
“probe” muon, and it is used to measure the efficiency of a given reconstruction step relative to
a probe selection by counting the number of probe muons that pass the condition under study
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Table 1: Parameters of the tag-and-probe method used in this paper. ∆R is the maximum
allowed angular separation between the tag muon and the probe muon.

Efficiency Probe object ∆R trigger-probe
L1 reconstruction Probe muon 0.5
L2 reconstruction Probe muon matched to L1 muon 0.3
L3 reconstruction Probe muon matched to L1 muon 0.1
L3 isolation Probe muon matched to L3 muon 0.1
HLT (single-muon) Probe muon 0.1
HLT (double-muon) Probe muon with relaxed pT requirement 0.1

and dividing by the overall number of probes. Probe muons are required to fulfill pT > 24 GeV
for most measurements. The threshold is lowered to 10 GeV for the measurement of the trigger
efficiency at low pT and to 12 GeV for some of the L1 efficiency measurements. The probe muon
must fulfill |η| < 2.4 and the same tight identification and isolation criteria as the tag muon. For
L2 and L3 reconstruction, the probe muon must be matched to an L1 muon with pT > 22 GeV
that passes tight L1 quality requirements. For the isolation efficiency measurement, the probe
has to satisfy the single-muon trigger requirements without an isolation requirement. The tag
and probe muons are required to be separated by ∆R =

√
(∆η)2 + (∆φ)2 > 0.3, which is suf-

ficient to remove biases due to nearby muons. To pass the probe condition, the probe muon is
required to geometrically match the trigger object that is being studied by requiring ∆R < 0.1.
This criterion is relaxed to 0.5 (0.3) for the L1 (L2) muon efficiency measurement, since these
objects have a larger directional resolution. Table 1 summarizes the different probe objects and
the matching criteria for the probe. Finally, the tag and probe muon pair is required to have an
invariant mass in the range 81 < mµµ < 101 GeV. This mass window size is chosen to efficiently
reject non-Z boson backgrounds while retaining large enough data sets for the measurement.
After the full selection, the contribution to the data samples from non-DY background is negli-
gible.

4 The Level-1 trigger
During Run 1, the L1 muon trigger system included three separate hardware muon track find-
ers, each of which reconstructed muons using input from a single muon subdetector: DT, CSC,
or RPC [2]. The upgraded L1 trigger system in Run 2 [14] combines inputs from all geometri-
cally available subdetectors and is segmented into three regional track finders: the barrel muon
track finder (BMTF) covering 0 < |η| < 0.83, the overlap muon track finder (OMTF) covering
0.83 < |η| < 1.24, and the endcap muon track finder (EMTF) covering 1.24 < |η| < 2.40.
The track finders receive hits or short track segments called “trigger primitives” (TPs) from
each station for every subdetector in that region. The TPs carry position (θ and φ) coordinates,
direction, and timing information (correlated with a collision bunch crossing). In an improve-
ment over Run 1, adjacent RPC hits are clustered into TPs before being used in track building
and RPC TPs are combined with nearby DT segments in the barrel to improve the overall TP
efficiency and timing for the BMTF.

Each of the three track finders reconstructs muons on processor boards with field-programmable
gate arrays (FPGAs), following a similar sequence. Trigger primitives aligned in θ and φ are
grouped to form tracks, which traverse the four stations in each subdetector. The angular de-
flection between stations is used to assign a pT value, primarily using the φ coordinate, since
the magnetic field causes charged-particle tracks to curve in the transverse plane with a ra-
dius proportional to pT. However, because of significant differences between the subdetectors,
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and large variations in the magnetic field strength and background muon rate, the exact track
building and pT assignment logic for each track finder is unique.

The Global Muon Trigger collects reconstructed muons from the three track finders and re-
moves geometrically overlapping tracks using information based on pT and quality, sending
the remainder to the L1 Global Trigger, which decides whether to keep the event for process-
ing by the HLT. The quality is assigned based on the number and location of TPs on a given
track [5]. Tracks passing the tight L1 quality requirement have the best pT resolution and are
therefore used for single-muon L1 seeds. For multi-muon L1 seeds, the criteria are relaxed
to improve the efficiency, allowing for tracks with a lower number of TPs to pass. This only
affects the overlap and endcap regions since all L1 tracks found by the BMTF pass the tight
L1 quality selection. The L1 muon reconstruction is described in greater detail in dedicated
publications [2, 5].

Some features of the upgraded system were implemented or improved progressively through-
out Run 2. The BMTF switched from DT-only segments to combined DT+RPC TPs at the end
of 2016. The OMTF developed a track building algorithm that was less reliant on RPC TPs
in 2018. In the EMTF, track timing was improved during 2016; RPC TPs were added to the
CSC-dominated track reconstruction before 2017 collisions, along with a more accurate pT as-
signment algorithm; and in 2018 modifications were made to reduce the impact of extra TPs
from pileup.

The efficiency of the L1 muon trigger is measured using the T&P technique. The numerator of
the efficiency includes all probe muons matched within ∆R < 0.5 to an L1 trigger with pT > 22
(7) GeV and passes the tight (medium) L1 quality criteria [5]. These requirements are applied
to select L1 muons, called L1 seeds, to initiate single (double) muon reconstruction at HLT.
In particular, these pT thresholds correspond to the lowest threshold used in an unprescaled
single-muon L1 seed, and the lowest threshold used in an unprescaled double-muon L1 seed
during Run 2, respectively.

The L1 efficiency in data is shown in Fig. 2, as a function of the offline pT and η of the muon,
as well as the number of primary vertices, the latter being all vertices reconstructed in the im-
mediate pp interaction region, including pileup interactions. This excludes secondary vertices
from meson decays in flight. Since very low pT muons are absorbed in the calorimeters and
the magnet cryostat before they reach the muon system, no measurement is performed for
offline pT < 4 GeV for the medium quality. The efficiency reaches about 93–95 (96–97)% for
tight (medium) L1 quality and, above 35 (12) GeV, is virtually independent of muon pT (up to
150 GeV). The performance of the L1 muon trigger for muons with a pT of several hundred GeV
is reduced by the high probability for radiative energy losses in the yoke of the CMS magnet.
The impact on the trigger efficiency for muons with momenta up to 1.5 TeV was studied in de-
tail in Ref. [6]. The conclusion is that the efficiency has been generally stable during the entire
data-taking period; it is higher for central muons and drops for |η| > 1.6, especially for tighter
quality requirements. The small variations in the efficiency as a function of η reflect the geo-
metric structure of the CMS muon system, in particular the cracks in between the wheels at
|η| ≈ 0.2. In general, for |η| > 1.6 the efficiency is larger in 2017 and 2018 compared to 2016 be-
cause of the addition of RPC TPs in the EMTF. However, for 2017 the efficiency is slightly lower
in the negative endcap because of two disabled muon CSC chambers in the first station, each
covering 10◦ in azimuth. Both 2017 and 2018 show slightly higher performance in the endcaps,
which arises from the series of improvements to the L1 reconstruction algorithms during the
data-taking period. Because the requirements on the number of TPs are more stringent in the
case of the tight L1 quality criteria, the gain in efficiency is larger in this case. Since the particles
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Figure 2: Efficiency of the L1 muon trigger requiring the tight (left) and medium (right) quality
criteria as required in single-muon and double-muon seeds, respectively, for Z → µµ events,
as a function of pT (upper row), muon η (middle row), and number of primary vertices (lower
row). The efficiency for 2016 data is shown in blue circles, for 2017 data in red squares, and for
2018 data in black triangles. Only statistical uncertainties are shown.
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from pileup interactions are mostly absorbed before they reach the muon system, the L1 trigger
efficiency is roughly independent of pileup and decreases by only a small amount as a function
of the number of reconstructed vertices. This small loss of performance as a function of the
pileup is limited to the endcap regions, where particles from pileup are concentrated.

Because of the limited time resolution of the muon detectors, L1 muons might mistakenly be
assigned to an earlier or later LHC bunch crossing (BX). This will lead to the wrong BX being
accepted by the L1 trigger system, an effect known as “trigger prefiring” if an earlier BX is
accepted. When such an event is accepted, the CMS L1 trigger rules [2, 5] prevent the following
two BXs from generating a valid trigger accept signal, resulting in the correct event being lost.
Furthermore, while L2 muons might be reconstructed from the muon system information now
assigned to the wrong BX, the reconstruction of L3 muons using information from the tracker
will fail. Thus the BX mistakenly accepted by the L1 will be rejected by the HLT. The associated
inefficiency cannot be measured using the standard T&P technique since events containing
a prefiring L1 muon are usually not recorded at all. There exist a few rare situations where
such events are recorded [5], allowing the assessment of the size of the effect. The overall
prefire probability of 1.5% per muon at the beginning of 2016 was reduced to 0.5% after the L1
timing measurements were improved by the use of RPC information in the BMTF and EMTF,
as mentioned above. Since in the tag and probe measurement the tag muon is required to be
matched to a single-muon trigger, these events cannot be lost as a result of the muon being
wrongly assigned to a later BX. Trigger inefficiency due to these prefired muons is therefore
not included in the trigger efficiencies presented above.

5 Muon reconstruction and selection in the high-level trigger
Depending on the year, 20–25% of all objects accepted by the single-muon L1 trigger do not cor-
respond to offline reconstructed muons (as detailed in Section 6.2). More sophisticated muon
reconstruction and identification algorithms are employed in the HLT to achieve the necessary
precision in the reconstructed muon candidates to reject these objects and to reduce the trigger
rate.

The reconstruction of the muon trajectory is performed in two steps: a reconstruction within
the muon system only (L2 muons) and a reconstruction in the inner tracking detector, which
is then combined with the information from the muon spectrometer to reconstruct the full
trajectory of the muon through the detector (L3 muons). The goal of the L2 reconstruction is
to refine the initial estimate of the muon trajectory from the L1 reconstruction by using more
precise algorithms that cannot be implemented in the hardware-based L1 trigger system. This
is especially important, since the L2 muons are used to seed the track reconstruction in the inner
tracker in most L3 reconstruction algorithms. The limitations on the computing time per event
in the HLT do not allow for track reconstruction to be performed in the whole volume of the
inner tracking detector. Therefore, the L3 reconstruction algorithms have to be limited to small
regions in the detector based on the presence of L1 or L2 muons to achieve high reconstruction
efficiency while keeping the use of computing resources at acceptable levels.

The single-muon trigger is allocated the largest share of the total available trigger bandwidth
(roughly 15%), so it is crucial to ensure that only well-measured muons are accepted. To this
end, identification and isolation criteria can be applied to the L3 muons. This helps to reject
trajectories that do not correspond to genuine muons, as well as to reject muons inside jets or
from heavy flavor decays, thus reducing the trigger rate while keeping a high acceptance for
the muons of interest.
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5.1 Level-2 muon reconstruction

The reconstruction of L2 muons is identical to that used for offline “standalone muons” [1,
4, 15? ]. It has been stable throughout Run 2 and showed excellent performance despite the
harsher pileup conditions of Run 2. This is because the muon detectors are not significantly
affected by the harsher pileup conditions of Run 2, since the particles from pileup collisions are
absorbed in the calorimeters, the magnet cryostat, and the steel return yoke.

The DT and CSC segments are taken as inputs and combined to produce a set of initial track
states, referred to as “L2 seeds”, which are the starting point for the reconstruction of muon
tracks. Here a “state” refers to the five-dimensional parameterization of a trajectory on a spe-
cific detector surface, such as one of the muon chambers. The five parameters are the ratio of
charge over momentum, the transverse and longitudinal angles with respect to the beam di-
rection, and the transverse and longitudinal impact parameters with respect to the beam spot,
defined as the center of the pp interaction region.

A track seed is built using a pattern of segments across the muon stations. L2 seeds are geo-
metrically matched to an L1 muon trigger candidate within ∆R < 0.3 and only the closest seed
used. For a given pattern, consisting of at least one segment, the pT of the seed is estimated
using a parameterization linear in ∆φ, which is either the angle of the segment with respect to
a straight line from the interaction point to the position of the segment, defined as the center
of the CMS coordinate system, or the difference in bending angle between two segments in
different stations.

Standalone tracks are built using the Kalman filter technique [16], a recursive algorithm that
performs pattern recognition detector layer by detector layer and, at the same time, updates
the trajectory parameters, where for the muon system this corresponds to the four stations of
muon chambers.

The track-building algorithm starts from the seed state (position, direction, pT). The parameters
of the seed are extrapolated to the innermost compatible muon chamber and are used to iden-
tify a measurement (track segment in the DTs and CSCs, hit in the RPCs) consistent with the
muon trajectory. The information from the selected measurement (position, direction) is used
to update the state parameters. If multiple compatible segments or hits are found in the same
muon chamber, the measurement that minimizes the χ2 of the track is selected. The updated
track is then extrapolated to the next compatible chamber and the same procedure is repeated
until the outermost chamber of the detector is reached. The track building is performed twice:
first by proceeding from the innermost layer of the muon detector toward the outermost, and
second in the opposite direction. This allows the algorithm to remove possible biases from the
initial seed.

If the track segments for one muon are not merged into a single seed, multiple L2 seeds and
subsequently duplicate tracks can be built from a single muon. Since they typically share a
fraction of hits or segments, all the track candidates that share at least one hit are compared
with each other and only the L2 candidate of best quality is kept, on the basis of its χ2 and hit
multiplicity.

As a last step, the beam spot position is used to constrain the track parameters to improve the
momentum resolution of tracks. However, this constraint is not applied in dedicated triggers
targeting cosmic muons or muons not originating from the pp interaction region, because it
would reduce efficiency for these types of muons. These dedicated triggers rely purely on the
unconstrained L2 information and do not use the L3 track reconstruction steps described in the
upcoming sections.
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The L2 reconstruction efficiency with respect to L1 muons is shown in Fig. 3 as a function of
pT and η of the probe muon, as well as the number of primary vertices for data collected in
2016, 2017 and 2018. The overall efficiency exceeds 99.5% and is independent of pT within
uncertainties, as is expected since the standalone muon reconstruction that is part of the offline
reconstruction, and therefore the probe object, is very close to the L2 reconstruction algorithm.
Because the L1 and L2 reconstruction algorithms are sensitive to the same detector effects,
requiring the probe muon to be matched to an L1 muon masks the impact of these effects
in this measurement. However, small residual effects remain because of the differences in
the reconstruction of trigger primitives in the L1 versus DT and CSC segments in L2. The
efficiency drops for some values of η (0.2 < |η| < 0.3 and 0.9 < |η| < 1.2) are caused by
the cracks in between the wheels of the CMS muon system. In these cases, muon segments
may be missing in some stations, or are reconstructed with lower quality at the edge of the
muon chambers. Since the L1 and L2 muon reconstruction algorithms are affected by this in
different ways, the L2 efficiency is slightly reduced with respect to L1. Furthermore a slight
loss of efficiency is observed in 2017 and 2018 for negative values of η because of two disabled
muon CSC chambers in the first station, each covering 10◦ in azimuth.

Since the observed relative differences between L1 and L2 are typically <1%, the stability of
the L2 reconstruction performance during the LHC Run 2 is clear. Furthermore, the efficiency
is independent of the number of reconstructed vertices in the event, because particles from the
additional pp interactions rarely reach the muon system.

5.2 Level-3 muon reconstruction

Level-3 muons are reconstructed using all available information regarding the trajectory of the
muon from both the muon spectrometer and the inner tracking detector. The muon is recon-
structed by either matching a track in the inner tracker with an L2 muon and performing a
combined track fit using the information from both the muon system and tracking detectors,
or by identifying an inner-detector track as a muon candidate by matching it to an L1 muon
without performing a combined fit. These two types of reconstructed muons are conceptually
equivalent to the “global” and “tracker” muon algorithms used in the offline muon reconstruc-
tion [4].

The first step in this procedure is the reconstruction of tracks in the inner tracker. It uses the
same techniques as the general CMS track reconstruction [8]. The tracking starts by building
seeds that are used for the pattern recognition step. The trajectory is sequentially propagated
to the next detector layer and compatible hits are added using the Kalman filter technique [16].
This propagation happens either from the center of detector towards the muon system (“inside-
out”) or starting with the outer tracker layers and moving inwards towards the interaction
point (“outside-in”). The final track parameters are obtained from a refit that is performed
once all hits associated with the trajectory are known. Poor-quality tracks are rejected at the
end of reconstruction.

During Run 2 data taking, different L3 reconstruction algorithms were used: during 2016, two
distinct approaches were used to build an L3 muon, the “cascade” and the “tracker muon”
algorithms, described in Sections 5.2.1 and 5.2.2, respectively. During 2017 and 2018, both
algorithms were replaced by a common approach called “iterative” algorithm, described in
Section 5.2.4.
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Figure 3: Efficiency of the L2 reconstruction with respect to L1 muons (pT > 22 GeV and “tight”
quality) as a function of pT (upper left) and η (upper right) of the probe muons. The dependence
with the number of primary vertices is also shown (lower middle). The efficiency for 2016 data
is shown in blue circles, for 2017 data in red squares, and for 2018 data in black triangles. Only
statistical uncertainties are shown.



12

5.2.1 L3 muon seeded by L2: the cascade algorithm

The cascade algorithm reconstructs muon trajectories in the inner tracker based on L2 muons.
Three different algorithms are used to create track seeds based on the L2 information: “outside-
in state”, “outside-in hit”, and “inside-out hit”, described in more detail below. These three al-
gorithms are used in sequence, such that later (more precise and computationally demanding)
reconstruction algorithms are only run if the previous algorithms were not successful in recon-
structing a track for a given L2 muon, leading to the name “cascade”. This exclusive approach
reduces the required processing time. Muon tracks reconstructed during the early steps with
a transverse impact parameter larger than 0.2 cm are rejected to allow later steps to properly
reconstruct them again and ensure that poorly reconstructed tracks are not used in the final
selection.

• The outside-in state algorithm propagates the track state of the L2 muon onto the sur-
face of the outermost tracker layer. A “stepping helix” propagator is used, which
splits the propagation into steps of finite helix length and includes the magnetic
field, as well as energy losses and multiple scattering in material. This propagated
state, with its uncertainties enlarged by η- and pT-dependent scale factors ranging
from 3 to 10, is used to identify detector modules in a given tracker layer compatible
with the state within χ2 < 40, independent of the presence of hits. The χ2 is calcu-
lated based on the position of the state on the tracker layer and the closest edge of
the module, taking into account the uncertainties of the state. A seed is created from
a state updated with the position of a compatible module and is used to start the pat-
tern recognition. If no compatible module is found in a layer, the state is propagated
further inwards until a compatible module is found or all possible layers are ex-
hausted. The pattern recognition uses the Kalman filter, propagating layer-by-layer
towards the interaction point and adding compatible hits to the trajectory, followed
by the final track fit.

• The outside-in hit algorithm propagates the track state of the L2 muon to the outer-
most tracker layer. However, instead of using the propagated state directly as the
track seed, it first searches for compatible hits in that layer, using the same criteria
to identify compatible detector modules to check for hits as in the previous case. Up
to five of the most compatible hits are then used to update the track state and create
one seed per hit. Again, the algorithm moves inwards layer-by-layer until a layer
with compatible hits is found or all layers are exhausted. If the seed positions pro-
jected onto the beam axis fulfill |z| < 25 cm with respect to the center of the detector,
they are used to initiate the same steps of pattern recognition and track fitting as the
outside-in state algorithm.

• The inside-out hit algorithm uses the L2 muon information to define a region of in-
terest (ROI) on the innermost pixel layer. The size of the region is given by the
minimum of either a parameterization as a function of η and pT of the L2 muon or
the uncertainty in the L2 parameters propagated to the pixel detector. However, a
minimal size of 0.1×0.1 in η and φ is always used. Within these regions, compatible
triplets (doublets) of pixel hits on three (two) pixel layers are formed whose trans-
verse (longitudinal) impact parameters are required to be smaller than 0.2 (15.9) cm
with respect to the beam spot. These hit multiplets are used as the seeds to initiate
the pattern recognition from the pixel detector outwards.

The collection of tracker tracks created from the three cascade algorithms are then matched to
the L2 muons. For matching, the tracker tracks and L2 muons are propagated onto a common
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surface and compared using η- and pT-dependent criteria based on geometrical distance and
χ2 compatibility. A combined fit is performed with the Kalman filter using information from
both the selected tracker track and the matched L2 muon. The fit with the best χ2 per degree of
freedom is used as the final L3 muon. Approximately 90% of accepted muons are reconstructed
using the outside-in state approach, whereas about 5% each come from the outside-in hit and
inside-out hit approaches.

5.2.2 L3 muon seeded by L1: the tracker muon algorithm

The tracker muon reconstruction algorithm solely relies on the pixel and strip tracking detec-
tors to reconstruct the muon tracks. In this algorithm, information from the muon detectors is
only used in two places, first to define the ROI for the track reconstruction in the tracking de-
tector and later to tag the reconstructed tracks as muons by matching them to segments in the
muon stations. This approach does not rely on the successful reconstruction of an L2 muon and
therefore leads to improvement in the muon trigger efficiency in cases where the L2 muon was
poorly reconstructed. When combined with the L2-seeded approaches, this makes the overall
muon trigger reconstruction more robust.

The starting point of the inside-out track reconstruction is an L1 muon. An ROI is generated
based on the L1 parameters, extrapolated back to the interaction point, and the track recon-
struction algorithms are confined to this region, to reduce the computing time demands. To
further reduce this timing, only L1 muons with a pT > 15 GeV are used to select the region.
The number of ROIs in the tracker muon algorithm is limited to two per event, and ROIs are
created from L1 muons in descending order of pT. Tracks are built following an iterative track-
ing approach [8], where tracks are built first using triplets of pixel hits as seeds, which is then
relaxed to using doublets of hits in a second iteration. The collections of tracks produced in
both iterations passing a loose track quality selection based on the track quality and impact
parameters are merged into a single collection. The resulting tracks are matched to segments
in the muon system to tag them as “tracker muons”, following the same procedure that is used
for the offline reconstruction [4].

5.2.3 Performance of the cascade and tracker muon algorithms

The L3 muon reconstruction efficiency with respect to L1 muons for both the cascade and
tracker muon algorithms is shown in Fig. 4. Since each algorithm was used for independent
triggers, the combined efficiency of the logical OR of both algorithms is also shown. The av-
erage efficiencies are about 96% for the tracker muon algorithm and 99% for the cascade algo-
rithm. This difference is caused by two effects. First, quality requirements on the muon tracks
are applied in the tracker muon algorithm, which are not present in the cascade algorithm. Sec-
ondly, as the track reconstruction in the cascade algorithm is seeded predominantly outside-in,
it is able to reconstruct tracks with very few hits in the pixel detector, which are missed by the
tracker muon algorithm. Combined, the two algorithms reach an efficiency of about 99.9%, in-
dependent of η and φ of the muons. Such high efficiencies are confirmed also in simulation for
the combination of both algorithms. Although some loss of efficiency with increasing pileup
is seen for each algorithm individually, the combination of the algorithms is not degraded at
high pileup. The tracker muon algorithm is more strongly affected by higher pileup than the
cascade algorithm since, whereas the occupancy of the pixel detector increases with pileup, it
remains relatively low in the outer part of the tracker where most seeds for the cascade algo-
rithms are built. In addition, the pixel detector in use in 2016 exhibited a loss of hit efficiency as
the occupancy of the detector increased, resulting in a loss of efficiency for the creation of track
seeds for the tracker muon algorithm. The upgraded pixel detector installed in 2017 does not
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Figure 4: Efficiency of the cascade and tracker muon L3 reconstruction algorithms, as well
as the logical OR between the two, measured in data events as a function of pT (upper left),
muon η (upper right), and the number of reconstructed primary vertices (lower middle). Only
statistical uncertainties are shown.

exhibit this effect.

5.2.4 L3 muon seeded by L2 and L1: the iterative algorithm

The third muon reconstruction algorithm that was used during Run 2 is the so-called “itera-
tive” algorithm. With the installation of the new pixel detector before the beginning of the 2017
data taking, a redesign of the reconstruction techniques was required to take advantage of the
additional pixel layer in the upgraded detector [3]. The algorithm replaced the previously de-
scribed cascade and tracker muon approaches, combining the advantages of both into a single
algorithm to make a unified trigger decision. This eliminates the need to consider two distinct
triggers at analysis level. The iterative algorithm consists of three steps: one outside-in step
seeded by L2 muons, one inside-out step seeded by L2 muons, and a second inside-out step
seeded by L1 muons. For the inside-out step seeded by an L2 muon, only muons that were not
reconstructed as an L3 muon in the outside-in step are used. For the L1-muon seeded step, in
2017 it was run only for L1 muons that could not be matched to an already reconstructed L3
muon. In 2018, all the L1 muons were used to maximize the efficiency of the final algorithm.
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The outside-in reconstruction step uses L2 muons to start a search for track reconstruction seeds
in the inner tracker. Using the parameters from the L2 muon, the trajectory is propagated to the
outermost tracker layers using the stepping helix propagator to find the seed, similar to what
is done with the outside-in steps of the cascade algorithm. To increase the efficiency of this step
with respect to the cascade algorithm, the iterative algorithm creates two trajectory states on
the outer tracker surface for seeding (one updated with the interaction point as an additional
constraint and one not updated). In addition, up to five seeds are then generated by finding a
silicon strip detector hit compatible with the extrapolated state. After the pattern recognition
step, only tracks satisfying certain quality requirements [8] are kept.

Both inside-out steps make use of the iterative tracking techniques, similar to those used for
the tracker muon algorithm. The ROIs are generated using either L2 or L1 muons, depending
on the step. Since the uncertainties in the parameters of an L2 muon are much smaller than
those for the L1 muons, the size of the ROI is much smaller for the L2-seeded step. The first
iteration is seeded using pixel quadruplets built using the cellular automaton algorithm [17],
targeting the reconstruction of prompt tracks above 1.2 GeV. The second iteration is seeded
by pixel triplets to recover efficiency from the previous iteration. Finally, one last iteration,
seeded by pixel doublets, was added for the data taking in 2018 to improve the resilience of
the algorithm in situations where fewer than three hits might be available for seed building. In
2018, about 40% of muon tracks created by this algorithm on average are reconstructed from
quadruplet seeds, 50% from triplet seeds, and 10% from doublet seeds.

Each reconstruction step produces a collection of tracker tracks that are then combined, remov-
ing any duplicates. For the L2-seeded steps, the tracker tracks are then matched to the L2 muon,
and a combined fit of the tracker and the muon track is performed to build an L3 muon. For
the L1-seeded step, the tracker tracks are matched to hits in the muon system to create tracker
muons. Duplicate tracks already contained in the L3 muon collections from the previous steps
are removed, and all muons are merged into one single collection. This matching and refitting
procedure is identical to that used in offline reconstruction to produce the muon collection [4].

Figure 5 shows the reconstruction efficiency with respect to L1 muons of the different steps of
the iterative algorithm, as a function of muon pT and η and of the number of reconstructed pri-
mary vertices. This measurement is carried out on 2018 data using the best performing version
of the algorithm deployed during data taking. The stacked histograms show the increase of
tracking efficiency when the different steps of the algorithm are successively added. The over-
all efficiency is almost 100%, showing how the inclusion of the inside-out from L1 step prevents
inefficiencies from relying on the L2 reconstruction and the L2-seeded tracking. Around 97%
of the muons are reconstructed by the outside-in step, and the rest of the efficiency is recovered
by the two inside-out steps. The outside-in reconstruction efficiency is most efficient at low pT
and with few reconstructed vertices. Since the scale factors used to enlarge the uncertainty of
the L2 muons during the seeding stage were not optimized for high-pT muons, the efficiency
drops to about 94% above 250 GeV. The inside-out steps recover the efficiency loss, ensuring
excellent performance at both high pileup and high pT.

Finally, to decrease the trigger rate and increase the purity of the L3 muon candidates, mild
identification criteria were introduced to the iterative L3 algorithm at the start of 2018. At
least one muon segment should match the extrapolated tracker track, just as for offline tracker
muons [4]. In addition, the tracker tracks of the muons are required to have more than five strip
detector layers with measurements, and at least one hit in the pixel detector. Furthermore, for
muons with pT > 8 GeV the track is required to be matched to at least two muon stations,
except when fewer than two matches are expected from the detector geometry as occurs, e.g.,
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Figure 5: Efficiency of the iterative algorithm with respect to L1 muons as a function of pT
(upper left), muon η (upper right), and the number of reconstructed primary vertices (lower
middle). The efficiency contributions from the different iterations are shown as stacked his-
tograms. Only statistical uncertainties are shown.
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in the cracks between the wheels of the muon system.

5.2.5 L3 muon reconstruction and identification performance

To directly compare the performance of different algorithms, Fig. 6 shows the efficiency of the
iterative and the logical OR of the cascade and tracker muon algorithms in data containing Z
boson candidates, as a function of muon pT and η, and the number of reconstructed primary
vertices.
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Figure 6: Efficiency of the iterative algorithm with respect to L1 muons compared with the logi-
cal OR of the cascade and tracker muon reconstruction measured in data events as a function of
pT (upper left), muon η (upper right), and the number of reconstructed vertices (lower middle).
Only statistical uncertainties are shown.

For the iterative algorithm, we show the performance for 2018 data using the most efficient
configuration of the algorithm, as well as two measurements for 2017 data using the version of
the algorithm used during that year. The early 2017 data provide the best performance of the
upgraded pixel detector achieved during that year, whereas the late 2017 data show the effect
of inactive pixel detector modules on the reconstruction efficiency. The 2017 version of the
iterative algorithm achieves an efficiency of up to 99% on the early 2017 data. Efficiency losses
are observed at low pT, in the barrel-endcap overlap region of the detector and the very forward
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endcaps, and with a high number of reconstructed vertices. These trends are significantly more
pronounced in the late 2017 data where the full efficiency drops to 96% overall and as low as
88% in the overlap region. The asymmetry between negative and positive η values in the
central part of the detector highlights the random distribution of the pixel module loss. The
overlap region is especially affected since tracks in this region pass only three layers of the
pixel detector so that any loss of modules has a particularly large effect. This motivated the
significant changes to the iterative algorithm for the 2018 data taking.

For 2018, we show both the L3 reconstruction efficiency, as presented in Fig. 5, and the full effi-
ciency of the algorithm, including muon identification described in the previous section. For a
fair comparison, the cascade and tracker muon algorithms have been run on 2018 data and the
resulting efficiency has been measured. On these data, both algorithms achieve reconstruction
efficiencies above 99.5%, with slightly higher efficiency in the case of the iterative algorithm.
However, after the application of the muon identification selection, the efficiency of the iter-
ative algorithm ends up slightly lower than the logical OR of the cascade and tracker muon
algorithms. This small loss of efficiency is expected and acceptable considering the benefits
to the purity and trigger rates in high pileup conditions that the muon identification selection
provides, as discussed in Section 6.2. In all cases, the efficiency is independent of η and φ of the
muon, and the reconstruction is robust against pileup. A small pileup dependence is observed
for the muon identification, for which the efficiency decreases by about 1% as the number of
reconstructed vertices increases up to 60.

Good pT resolution for L3 muons with respect to the offline reconstruction ensures a sharp
turn-on of the trigger efficiency at the nominal pT threshold. This allows efficient rejection of
low-pT muons that might otherwise have their momentum overestimated and pass the trigger
threshold. Moreover, a sharp efficiency turn-on improves the offline analysis acceptance, since
the turn-on region is commonly rejected.

The pT resolution has been measured and compared for L2 muons and the different L3 recon-
struction algorithms used during Run 2. It is obtained from the residual with respect to the
offline muon reconstruction as

residual =
(

qoffline/poffline
T − qtrigger/ptrigger

T

) poffline
T

qoffline . (1)

where q is the reconstructed electric charge of the muon. This quantity is measured in data
using a T&P-like selection by selecting events with two offline muons passing the tight iden-
tification and isolation criteria. The invariant mass of the dimuon pairs must be in the range
81 < mµµ < 101 GeV. If an L3 muon track is matched to one of these offline muons within
∆R < 0.1, the residual is computed. With these selection criteria, the charge misidentification
probability for L2 muons compared with offline muons rises from 3% to 10% as pT increases
from 30 GeV to 200 GeV. For the different L3 reconstruction algorithms, the charge misidentifi-
cation probability depends on the level of track quality requirements applied in the algorithm,
ranging from O(10−3) for cascade to O(10−5) for the iterative algorithm after application of
muon identification requirements.

The residual distributions, integrated over η and pT, are shown in Fig. 7. Since they use only
the information from the muon system, the distribution for L2 muons is much wider than for
the L3 reconstruction algorithms. The different L3 algorithms have comparable resolution in
the core of the distributions, but differ significantly in the tails, as shown by the RMS values.
The iterative L3 and the tracker muon reconstruction have a better pT resolution with fewer
muons in the tails of the distribution than those for the cascade algorithm, since the former
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Figure 7: The q/pT residual distributions integrated over η and pT for all different HLT muon
reconstruction algorithms used in 2018. Only statistical uncertainties are shown.

includes a track quality selection that is missing in the latter. The smallest tails are observed
for the iterative L3 reconstruction after applying muon identification, because this removes a
significant number of poorly reconstructed muon tracks that survived the initial track selection
at the reconstruction stage. From Fig. 7, no significant bias in the momentum scale is visible.
For L2 muons, the scale bias is about 1% toward higher pT values compared with offline muons.
For the cascade algorithm it is less than 0.1% and even smaller biases are observed for the other
L3 algorithms.

Figure 8 shows the resolution (standard deviation of the Gaussian core from a fit of a double-
sided Crystal Ball function [18]) of the residual distributions from the L2 and L3 algorithms as
a function of the pT and |η| of the offline muon. The resolution for L2 muons has been reduced
by a factor of 10 for the purpose of these plots. Because the L3 reconstruction algorithms make
use of the hits in the inner tracking detector, their pT resolution is significantly better than that
for the L2 reconstruction. Generally, the momentum resolution worsens at high pT, because
the tracks are straighter with a smaller sagitta, and in the forward region, where the ~v × ~B
effect causes the magnetic bending to be smaller when the track and magnetic field are nearly
collinear. No significant difference is observed between the tracker muon and iterative L3
reconstruction algorithms, whereas the cascade algorithm has poorer pT resolution because
of its reliance on outside-in reconstruction, as discussed above.

5.2.6 Muon isolation

Muons produced in the decays of vector or Higgs bosons, including the W bosons in the decay
chain of top quark pairs (tt), as well as in many new physics models, are mostly produced
spatially isolated from other final-state particles. Thus, the isolation of a muon from other
particles in the event is an effective procedure to suppress muons from decays in flight and
meson decays, and to select a pure sample of signal-like muons for the analysis of these kinds
of final states, allowing for reduced muon pT thresholds for isolated muon triggers.
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Figure 8: Relative pT resolution obtained from the standard deviations of the q/pT residual
distributions as a function of pT (left) and η (right) for all different HLT muon reconstruction
algorithms used in 2018. Only statistical uncertainties are shown.

The isolation of the muon is evaluated by considering the pT of additional tracks reconstructed
in the inner tracker and energy deposits in the calorimeters, computed using a clustering al-
gorithm based on the CMS particle-flow algorithm [19], in a cone of radius ∆R = 0.3 around
the muon itself. The muon track and the ionization energy it deposited in the calorimeters are
excluded from the calculation. Furthermore, the contribution from tracks not originating at
the same vertex as the muon is rejected. The estimated contribution from pileup to the energy
deposits in the calorimeter is also subtracted. It is computed using the average energy density
in the event, ρ, scaled to an effective area which relates the per-event ρ to the fraction expected
in the isolation cone, and subtracted from the particle-flow cluster sums. The effective areas are
computed separately for the barrel and endcap regions, and for electromagnetic and hadronic
clusters.

The isolation is evaluated separately for tracks and ECAL and HCAL clusters, and sequential
requirements are applied on the resulting momentum or energy sums relative to the muon
pT. Effective areas for the pileup subtraction and the relative isolation requirements have been
adjusted for each year of data-taking, due to the different pileup conditions and minor changes
in the clustering. The relative isolation requirements range from 0.08 (0.16) to 0.14 (0.22) for
electromagnetic (hadronic) clusters, and from 0.07 to 0.09 for the track-based component. A
looser version of the isolation based only on tracks, requiring the relative track isolation to be
< 0.4 has been used in some dimuon triggers.

The efficiency of the isolation requirement with respect to L3 muons is measured in 2016, 2017,
and 2018 data and shown in Fig. 9, as a function of muon pT, η, and the number of reconstructed
vertices. The overall efficiency is about 98% on average for the three years. As a result of the
adjustment of the isolation requirements for the different years, the 2016 data show a slightly
higher isolation efficiency in the endcaps, whereas the efficiency is higher in 2017 and 2018 data
in the central part of the detector. The efficiency shows a slight drop at low pT in both data sets
and is constant at high pT. The isolation requirements were re-optimized in 2017 and 2018 to
reach a more stable efficiency, as a function of pileup, as shown in Fig. 9 (right).
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Figure 9: Isolation efficiency as a function of muon pT (upper left)), η (upper right), and the
number of reconstructed vertices (lower middle) during the Run 2 data taking. Only statistical
uncertainties are shown.
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6 Performance of selected single- and double-muon reference trig-
gers

In this section, a selection of reference triggers is described to illustrate the performance of the
full trigger sequence, including reconstruction, identification and, if applicable, isolation. The
triggers chosen are the two unprescaled single-muon triggers, with and without an isolation
requirement, and one unprescaled double-muon trigger. The details of these triggers, together
with a shorthand name that will be used in the following are given here:

• Isolated single-muon trigger (IsoMu24): A single-muon trigger with a pT threshold of
24 GeV that requires the muon to be isolated to achieve the low-pT threshold. This
is the main trigger for many analyses studying standard model processes, such as
W → µν, Z → µµ, or semileptonic tt decays.

• Nonisolated single-muon trigger (Mu50): A single-muon trigger with a pT threshold of
50 GeV without an isolation requirement. The higher momentum threshold achieves
acceptable trigger rates without applying an isolation requirement at the HLT, in-
creasing the trigger efficiency slightly even for cases in which a high-pT muon show-
ered in the calorimeter. This trigger is therefore used in analyses targetingg events
with particularly high-pT leptons, such as searches for heavy new particles. Other
uses include searches for Lorentz-boosted objects in which the muon may overlap
with jets. To reach maximum efficiency for analyses using dedicated high-pT muon
identification criteria, this trigger is used in combination with two other triggers that
use the cascade and the tracker muon algorithms with a pT threshold of 100 GeV that
were present during the entire data-taking period and kept as a backup solution
when the iterative L3 reconstruction was introduced [6]. Therefore all performance
measurements presented for Mu50 include the logical OR with these two backup
triggers.

• Double-muon trigger (Mu17Mu8): A double-muon trigger where each muon is re-
quired to pass the loose track-based isolation requirement. The pT threshold applied
to the muon with higher (lower) pT is 17 (8) GeV. The lower pT requirement on
the first muon compared with the single-muon triggers increases the acceptance for
many dilepton processes, such as fully leptonic tt decays, and many searches for
new physics. To reduce the trigger rate due to pileup events, a requirement that the
longitudinal distance between the two muons along the beam line must be less than
0.2 cm was added during the 2016 data taking, with negligible impact on the effi-
ciency. Similarly, during 2017 and 2018, an extra requirement on the invariant mass
of the dimuon system to be larger than 3.8 GeV was applied to reduce the rate from
low-mass dimuon resonances.

In the following, the efficiencies for the two single-muon triggers and the low-pT part of the
double-muon trigger are discussed in Section 6.1. The HLT rate measurements and the compo-
sition of the selected muon sample are described in Section 6.2. Finally, the processing time for
the muon HLT reconstruction is discussed in Section 6.3.

6.1 Trigger efficiency

The efficiencies of the isolated and nonisolated single-muon triggers are shown in Fig. 10 as a
function of pT and η of the probe muons and the number of reconstructed vertices. The full
data sets for 2016, 2017, and 2018 are used to illustrate the performance for the data set used in
CMS analyses. To count as passed in the efficiency calculation, the probe must be matched to
an HLT muon that satisfies the trigger under study.
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For the isolated single-muon triggers, the overall efficiencies for muons with pT > 26 GeV are
close to 90% in all years. The efficiency is about 1% lower in 2017. This is attributed to both the
introduction of the first version of the iterative L3 reconstruction, which was updated several
times during the 2017 data-taking period to recover the performance, and the inactive pixel
detector modules caused by the powering issue [12]. These changes offset the improvements
in the L1 efficiency described above. In 2018, a higher efficiency was achieved, even exceeding
the 2016 value because of the more robust iterative L3 algorithm and the repairs made to the
pixel detector between the 2017 and 2018 data-taking periods. There is a strong η dependence
of the efficiency. It is mostly constant in the barrel region of the detector with the exception
of the transition region between muon wheels at |η| ≈ 0.2, but the efficiency falls significantly
towards high values of |η| because of the difficulty to reconstruct L1 muons in that region, as
shown in Fig. 2. The efficiency decreases as a function of the number of reconstructed vertices
mostly because of the isolation requirement.

For the nonisolated muon triggers, a dedicated identification for high-pT muons [20] and an
offline isolation requirement based only on inner tracker tracks are used to select probe muons
to reflect the offline selection typically used together with this trigger. The overall efficiencies
for muons with pT > 52 GeV are 91%, 89%, and 92% for 2016, 2017, and 2018 data, respectively.
The dependencies of the efficiency on muon pT, η, and the number of reconstructed vertices
are shown in Fig. 10. The observed trends are very similar to the case of the isolated triggers,
with the dependence on the number of reconstructed vertices reduced because of the lack of
isolation requirements.

The single-muon triggers used during Run 2 have a pT threshold of 24 GeV. To probe the per-
formance of the trigger at low pT, the efficiency to trigger on the muon with lower pT in a
dimuon event has been measured. For this purpose, the same T&P technique as described
above is used, with the exception that the pT requirement on the probe muon is relaxed. As the
tag muon is required to satisfy the IsoMu24 trigger, the efficiency of the probe muon to satisfy
the part of the double-muon triggers that requires one muon with pT > 8 GeV is measured in-
dependently of the requirements on the higher-pT muon. The measured efficiencies versus the
probe muon pT for the three years are given in Fig. 11. The same dependence of the efficiency
on the different years as for the single-muon triggers is observed.

6.2 Trigger rate

The previous sections show that the iterative algorithm is as efficient as the trigger strategy
used at the beginning of Run 2, despite the slight loss of efficiency from the introduction of
muon identification criteria in 2018. This small loss comes with a significant reduction in rate,
thus the same pT thresholds could be maintained during the entire data taking despite the
higher luminosity and more challenging pileup conditions in 2018. In the following, HLT trig-
ger rates for the trigger configuration that was used at the beginning (cascade OR tracker muon
in 2016) and at the end (iterative in 2018) of Run 2 will be compared.

The trigger rate is measured using dedicated data sets for trigger performance studies that
are collected without HLT requirements, and therefore contain a representative mix of event
topologies similar to those the HLT receives from the L1 trigger during data taking. The rate
is defined as the frequency with which a trigger condition has been satisfied in a given data-
taking period. Because the rate of muons produced is given by the overall production cross
section times the instantaneous luminosity, a linear luminosity dependence of the trigger rate
is expected, as long as reconstruction or selection effects do not introduce additional dependen-
cies. In the following, to facilitate the comparison between the triggers in 2016 and 2018, the
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Figure 10: Single-muon trigger efficiency for IsoMu24 (left) and Mu50 (right), as a function of
muon pT (upper row), η (middle row), and the number of reconstructed vertices (lower row).
Only statistical uncertainties are shown.
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rates for both years are scaled linearly to an instantaneous luminosity of 1034 cm−2 s−1. Only
statistical uncertainties are considered for these measurements.

Each step of the reconstruction described in the previous sections (L1, L2, L3) reduces the rate
and thus the total number of events that are kept for further analysis. The L1 trigger with pT >
22 GeV and tight quality requirements delivers a rate of 4506± 8 (4147± 10) Hz in 2016 (2018)
at an instantaneous luminosity of 1034 cm−2 s−1. The difference stems from the improvements
to the L1 trigger described earlier. In 2016, L2 muons with pT < 10 GeV were rejected. In 2017
and 2018, this requirement was removed. The L2 step introduces a rate reduction of about
50% in 2016 and 15% in 2018. For the IsoMu24 trigger, before applying isolation, only 8% of
the muons that were originally accepted by the L1 trigger are kept after the L3 step, and the
isolation requirement reduces the L3 rate by a further factor of 3. The rate for this trigger is
about 250 Hz at the highest instantaneous luminosity achieved in Run 2. The rates for the
individual steps of the trigger are summarized in Table 2.

Table 2: Rates for the individual steps of the IsoMu24 trigger. The rates are measured in
the 2016 and 2018 data sets, respectively, and then scaled to an instantaneous luminosity of
1034 cm−2 s−1. Only statistical uncertainties are considered for each measurement.

Rate (2016) [Hz] Rate (2018) [Hz]
L1 rate, pT > 22 GeV 4506± 8 4147± 10

L2 rate, (pT > 10 GeV in 2016) 2238± 6 3559± 10
L3 rate, pT > 24 GeV 377± 2 363± 3

Isolated L3 rate, pT > 24 GeV 125± 1 126± 2

The rates for the standard isolated single-muon trigger, nonisolated single-muon trigger, and
double-muon triggers for 2016 and 2018 are shown in Table 3. The isolated triggers already
select a very pure muon sample in 2016, so no further rate reduction from the improvement
of the L3 reconstruction algorithm in 2018 is observed. However for the nonisolated triggers
and the double-muon triggers, a respective rate reduction of around 10% and 30% from 2016
to 2018 is observed. For the single-muon trigger this rate reduction is achieved mainly by the
identification requirements introduced for the 2018 data taking. For the double-muon trigger
the rate has also been reduced by the introduction of a lower bound on the invariant mass of
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the two muons of 3.8 GeV, which rejects the J/ψ meson peak.

Table 3: Rates for the 2016 and 2018 trigger strategies. The rates are measured in the 2016 and
2018 data sets, respectively, and then scaled to an instantaneous luminosity of 1034 cm−2 s−1.
Only statistical uncertainties are considered for each measurement.

Rate (2016) [Hz] Rate (2018) [Hz]
IsoMu24 124.9± 1.3 126.0± 1.8

Mu50 28.7± 0.6 24.2± 0.8
Mu17Mu8 21.2± 0.5 14.9± 0.6

Figure 12 shows the trigger rates, normalized to the number of colliding bunches to account
for the different beam conditions between the years, as a function of the mean number of inter-
actions per bunch crossing nint for the isolated and nonisolated single-muon triggers as well as
the double-muon triggers.

The mean number of interactions per bunch crossing is calculated from the instantaneous lu-
minosity and the inelastic pp cross section. The data used for this analysis was taken only in an
LHC configuration with 2208 colliding bunches in 2016 and 2544 bunches in 2018, so it is a sub-
set of the total data set. The expected linear dependence is observed for all triggers except the
nonisolated single-muon trigger in 2016, where a faster growth occurs at the highest number of
interactions observed in that year. This effect is also slightly visible for the isolated single-muon
trigger. This results from a slightly higher rate of nonmuon objects accepted by the trigger in
high-pileup events in 2016, which was remedied in 2018. As discussed above, there is no sig-
nificant difference between the rates observed for the isolated single-muon trigger in 2016 and
2018. In the case of the nonisolated single-muon trigger, the rate is similar between the years at
low luminosity, but the increase of the rate with luminosity is significantly reduced in 2018. For
the double-muon trigger there is a significant difference already at low luminosity, originating
from the introduction of the invariant mass requirement discussed above. The dependency of
the rate on the number of interactions has been obtained from parabolic fits for 2016 and linear
fits for 2018 and the resulting parameters are summarized in Table 4.

The limit of an average of about 1 kHz on the total rate of events accepted by the HLT, imposed
by limited storage capacity and computing resources for offline reconstruction, make the trig-
ger bandwidth a coveted resource. Therefore it is important to ensure that the muon sample
accepted by the HLT is as pure in genuine muons as possible; otherwise the trigger rate would
be wasted on other objects misreconstructed as muons. To illustrate the improvements made
in this regard during Run 2, the composition of the selected sample has been measured in an
unbiased sample of events accepted by the L1 trigger by geometrically matching the triggered
muons to offline reconstructed muons within ∆R < 0.1(0.3) for L3 (L1 and L2) muons. The
triggered muons are then sorted into three categories:

• Unmatched: the triggered muon could not be matched to an offline muon passing
identification requirements.

Table 4: Increase of the trigger rate as a function of the number of pp interactions in an event
(nint) in units of mHz/interaction, parametrized with 2nd and 1st order polynomials, respec-
tively, for 2016 and 2018.

2016 2018
IsoMu24 (1.65± 0.02) nint + (0.0047± 0.0007) n2

int (1.787± 0.004) nint
Mu50 (0.348± 0.007) nint + (0.0019± 0.0002) n2

int (0.351± 0.001) nint
Mu17Mu8 ( 0.276± 0.002) nint + (0.0006± 0.0001) n2

int (0.215± 0.001) nint
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Figure 12: Dependence of the trigger rate per colliding bunch on the mean number of interac-
tions per bunch crossing for the isolated (upper left) and nonisolated (upper right) single-muon
triggers as well as the double-muon trigger (lower middle), comparing the 2016 and 2018 trig-
ger configurations. Quadratic (linear) fits to the 2016 (2018) data points are shown as colored
lines. Only statistical uncertainties are shown.

• Nonisolated muon: the triggered muon is matched to an offline muon passing identi-
fication but not isolation requirements.

• Isolated muon: the triggered muon is matched to an offline muon passing both iden-
tification and isolation requirements.

For this purpose we use loose identification requirements designed to accept both isolated and
nonisolated muons [4], while a tight isolation requirement is used to ensure that only truly
prompt muons are counted.

The composition of the selected sample for the four steps of the trigger sequence, L1, L2, L3,
and isolation, is shown in Fig. 13 for the cascade algorithm measured on 2016 data and the
iterative algorithm measured on 2018 data. For each step there is a minimum pT requirement
on the muons that is given by the values used in the trigger sequence. The thresholds are
22 GeV for the L1 muons used to seed the single-muon trigger, 10 GeV for the L2 muons used
to seed L3 reconstruction (a very loose cut that was only applied in 2016), and 24 GeV for
L3 muons since this is the final trigger threshold. The isolated-muon fraction is sequentially
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Figure 13: The composition of the selected muon sample for the 2016 (left) and 2018 (right)
data.

increased with every step of the reconstruction, reaching up to values of about 80% at the end
of the trigger sequence. Comparing 2016 and 2018, one can see a significant decrease in the
unmatched fraction by factors of 2–3 because of the improved reconstruction algorithm and
the application of identification criteria at L3. A slight increase in the fraction of unmatched
L1 and L2 muons in 2018 compared to 2016 is observed. This effect is most pronounced in
the barrel-endcap overlap region; it results from the use of lower quality DT segments, which
improve the momentum assignment and, hence, the total rate, but also increase the fraction of
nonmuon candidates that fire the trigger.

6.3 Processing time

The high input rate from L1 severely limits the computing resources available to make a de-
cision to keep or reject an event at the HLT. Fast algorithms are therefore required to keep the
average time to process an event within the budget, which is given by the available computing
resources for the HLT and increased from about 200 ms to about 300 ms from 2016 to 2018. The
processing time for the muon triggers has been measured using data from 2016 and 2018 on a
CMS reference machine equipped with a Intel® Xeon® E5-2650 v2 CPU running at 2.60 GHz,
which is slower than the latest processing nodes installed in the HLT. Events were processed
concurrently on four CPU cores in four threads. To ensure comparability, events from runs
with similar pileup conditions have been chosen. For 2016 the number of pileup interactions
ranges from 45 to 50 with a mean value of 46.3, for 2017 from 47 to 49 with a mean of 47.4,
and for 2018 from 46 to 48 with a mean of 47.3. The overall processing time for the full suite of
triggers used by CMS in those data sets is 181 ms/event for 2016, 180 ms/event for 2017, and
296 ms/event for 2018. The large increase in 2018 is mostly driven by algorithms implemented
to mitigate the inoperative modules in the pixel detector. The muon triggers discussed here
account for 4.1% of this processing time in 2016, which increases to 5.2% in 2018.

The cumulative average processing time of every step of the HLT reconstruction (L2 and L3)
of the IsoMu24 trigger is shown in Fig. 14. The distributions are normalized to the number
of L1 muons that are used to seed the reconstruction. No difference between the years is ob-
served in the reconstruction time for L2 muons. The 2016 L3 reconstruction algorithms (cas-
cade and tracker muon) require around 29 ms/muon, while the average processing time of the
2017 reconstruction is 43 ms/muon and that of the 2018 reconstruction algorithm (iterative) is
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Figure 14: Cumulative average processing time of each of the trigger reconstruction steps for
the IsoMu24 trigger.

128 ms/muon.

The increase in 2017, and especially 2018, is driven by several effects. In 2016, the inside-out re-
construction using multiple tracking iterations was run once per muon candidate in the tracker
muon reconstruction. In the iterative approach, this inside-out reconstruction was initially only
run for muons that failed in the outside-in step in 2017. In 2018, however, it was run for all L1
muons, and also seeded by those L2 muons that did not result in a track in the outside-in step.
The iterative tracking in the inside-out reconstruction is not only run more often in 2018, it is
also slower in 2017 and 2018 compared to 2016 because of the increased number of pixel de-
tector layer combinations in the upgraded pixel detector, resulting in a larger number of track
seeds. In 2018, it was further slowed down by the inclusion of a step that was seeded by a pair
of pixel hits. This step accounts for an increase of about 40 ms/muon in the processing time.
Finally, the 2018 version of the outside-in reconstruction creates significantly more track seeds,
resulting in an increase in the time spent on track building.

The isolation step is also slower by about 7 ms, driven both by the slower track reconstruction
with the upgraded pixel detector, as well as by an increase in the time to reconstruct isolation
information in the calorimeters because of a change in HCAL reconstruction.

The pileup dependence of the average processing time is shown in Fig. 15 for both the IsoMu24
and Mu50 triggers. The processing times in this case are lower than in Fig. 14 because an
event sample representative of the average composition encountered during data taking is used
and events with no L1 muons are included; these lower the average time. These results are
comparable to the processing time for the full HLT menu discussed above. The average number
of L1 muons per event in these data sets does not vary between the years by more than a
few percent. This makes these values representative of the processing time during nominal
operation of the HLT. The measurement is performed for the combination of the cascade and
tracker muon algorithms in 2016 data and for the iterative algorithm in 2018 data. Because of
the different running conditions in 2016 and 2018, the measurements span a different pileup
range. There is a moderate increase in the processing time between Mu50 and IsoMu24 caused
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of cascade and tracker muon measured in 2016 data is shown in blue circles, while they are
shown in red squares and black triangles for the iterative algorithm measured in 2017 and 2018
data. Only statistical uncertainties are shown.

by the need to compute the isolation in case of the IsoMu24. The time needed to compute the
isolation does not significantly depend on the pileup. The iterative algorithm does not only
have a higher average processing time, but also a stronger pileup dependence compared to
the cascade and tracker muon algorithms. This is due to the greater reliance of the iterative
algorithm on track seeding in the pixel detector, especially with the doublet-seeded iterations,
where the increased hit occupancy at higher pileup increases the number of tracks seeds found
inside the ROIs.

7 Summary
To maintain the excellent performance of the CMS muon trigger system in the much harsher
running conditions of LHC Run 2, especially the high-pileup environment in 2017 and 2018, the
reconstruction algorithms and identification criteria for muons in the high-level trigger system
were continually improved during the Run 2 data-taking period. In particular, the algorithm
used to reconstruct muon tracks in the inner tracker was improved in several steps during the
2017 and 2018 data-taking periods. Upgrades to the hardware-based Level-1 trigger further im-
proved the trigger efficiency for muons. This facilitated an increase in the purity of the selected
muon sample by introducing muon identification criteria in the high-level trigger system, while
maintaining, or even slightly improving, the overall efficiency. The plateau efficiency for both
isolated and nonisolated single muons above the transverse momentum threshold is around
90%. Compared with previous versions of the algorithm, a significant improvement in the
momentum resolution is achieved. For triggers without an isolation requirement, a reduction
in trigger rate of 10% for the same trigger threshold and instantaneous luminosity is observed
compared with the beginning of Run 2. Because these improvements come at a cost of increased
processing time needed to run the algorithms, this leaves room for further optimization for the
upcoming LHC Run 3 with the goal to maintain the excellent physics performance while im-
proving algorithmic efficiency.
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Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Inno-
vatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) un-
der the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science &
Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports
(MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany’s
Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number
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IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles,
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63: Also at Universität Zürich, Zurich, Switzerland
64: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
65: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
66: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-
le-Vieux, France
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