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ABSTRACT Sparse representation-based methods, as an important branch of anomaly detection (AD)
technologies for hyperspectral imagery (HSI), have attracted extensive attention. How to construct an over-
complete background dictionary containing all background categories and excluding anomaly signatures is
the focus. Traditional background dictionary construction methods first convert HSI into a two-dimensional
matrix composed of independent spectral vectors, and then execute the subsequent construction operations.
In this way, only spectral anomalies can be excluded from the background dictionary, whereas spatial
anomalies still exist. To alleviate this problem, this paper proposes a novel AD algorithm through sparse
representation with tensor decomposition-based dictionary construction and adaptive weighting. It has
three main advantages. First, tensor representation allows the spectral and spatial characteristics of HSI
to be preserved simultaneously, and Tucker decomposition achieves excellent separation between the
background part and anomaly part by distinguishing them along three modes. Second, the K-means+-+
clustering operation is implemented on the background part so that the background dictionary used for sparse
representation contains all background categories. Finally, an adaptive weighting matrix derived from the
anomaly part further improves the distinction between background pixels and anomalies. Experiments on
synthetic and real HSI datasets demonstrate the superiority of our proposed algorithm.

INDEX TERMS Anomaly detection, background dictionary construction, hyperspectral imagery, sparse
representation, tensor representation, Tucker decomposition.

I. INTRODUCTION

Hyperspectral imagery (HSI) has received increasing atten-
tion due to its inclusion of 2-dimensional (2D) spatial infor-
mation and almost continuous spectral information [1], [2].
Since the electromagnetic reflectance of each surface mate-
rial is unique and different, the abundant spatial and spec-
tral information in HSIs can be used to separate specified
objects from the background, which is known as target
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detection [3], [4]. Anomaly detection (AD) is a kind of unsu-
pervised target detection aims to distinguish low-probability
targets with significant spectral differences from the back-
ground without any prior knowledge [S]-[7]. Since spectral
calibration and atmospheric compensation are not necessary,
AD is more practical and widely used in many fields, such as
mineral exploration, oil pollution detection, surveillance and
rescue [8], [9].

Anomalies in an HSI exhibit two main characteristics:
(1) their spectral characteristics are significantly differ-
ent from those of their neighboring background, and
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(2) they occupy only a few pixels (or subpixels) embed-
ded in their surrounding uniform background [6], [7]. Many
AD methods have been proposed, and they can be roughly
classified into the following 5 approaches: statistical mod-
eling, kernel-based, subspace projection, matrix decompo-
sition, and representation-based. Most AD methods mainly
exploit the spectral differences between background pixels
and anomalies. The most well-known statistical method is
Reed-Xiaoli (RX) detector [10]. It first models the back-
ground with a multivariate normal distribution and then the
Mahalanobis distance between the detected pixel and the
background model is measured. The RX detector can use
either a global RX (GRX) to estimate background statistics
from the global scene, or a local RX (LRX) to estimate
background statistics from local scene by sliding a local
concentric double window [11]. However, the detection per-
formance of RX can be degraded when the Gaussian model
does not describe well the complex background or when
the anomaly contamination exists in the background esti-
mation [6]. Therefore, several improved RX-based anomaly
detectors have been proposed. For example, subspace RX
(SSRX) [12] improves background-anomaly separability by
removing redundant information. RX is applied on a limited
number of principal components (PCs) extracted by prin-
cipal component analysis (PCA). The low-rank and sparse
matrix decomposition (LRaSMD)-based Mahalanobis dis-
tance detector (LSMAD) [6] extracts background component
with the LRaSMD model and then calculates the background
statistics for RX. Other improved RX-based methods
include the cluster-based anomaly detector (CBAD) [13],
the weighted RX [14], and the Gaussian mixture-based
anomaly detector [15].

Kernel-based AD methods extend the original data into a
high-dimensional feature space to mine the high-order non-
linear information among interbands by employing a ker-
nel function. Typical kernel-based detectors are the kernel
RX (KRX) [16] and the support vector data description
(SVDD) [7]. Subspace projection-based methods, such as
the orthogonal subspace projection (OSP) [17] and the dual
window-based eigen separation transform (DWEST) [18],
project the HSI into a subspace where the distinction between
background and anomalies is enhanced. OSP focuses on con-
structing a background orthogonal subspace, while DWEST
uses the projection difference between the outer and inner
window regions for AD. Matrix decomposition-based meth-
ods perform AD by decomposing the HSI into a low-rank
background component and a sparse anomaly component,
taking advantage of the intrinsic properties of HSI. Robust
principal component analysis (RPCA) [19], low-rank and
sparse matrix decomposition [20], and low-rank repre-
sentation (LRR) [21] are the most representative matrix
decomposition-based detectors. LRaSMD considers the pres-
ence of isolated noise, whereas LRR assumes that the data are
in multiple subspaces and finds the lowest-rank representa-
tion of all pixels jointly.
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With the development of representation theory in signal
and image processing, representation-based methods have
been successfully applied to AD. For example, the collab-
orative representation-based detector (CRD) [22] is based
on the concept that each background pixel can be approx-
imated by a dictionary constructed from its neighboring
pixels, whereas anomalies cannot. How to optimize this
neighborhood dictionary is a key issue for CRD. The sparse
representation-based detector (SRD) [23], [24] assumes that
the background spectra can be linearly reconstructed by a
few atoms in an overcomplete background dictionary, and
then the reconstruction error can be used to measure the
anomaly response value of each pixel. Obviously, the focus
of SRD is to build an overcomplete background dictionary,
which is commonly constructed by a set of background bases
(spectra, endmembers, or eigenvectors) [23], [25]. An ideal
background dictionary should cover all background material
categories, exclude possible anomaly signatures, and have a
small construction burden. Background dictionary construc-
tion is used in many hyperspectral AD algorithms, such as
CRD [26] and LRR [25]. In addition, it is widely used in the
fields of computer vision and pattern recognition, such as face
recognition, compressed sensing, and spectral unmixing.

Various background dictionary construction strategies
have been proposed. The background joint sparse repre-
sentation (BJSR) [23] uses a joint sparse model to rep-
resent the pixels in a local region and then selects some
active atoms as the most representative background bases.
In [21], the low-rank and sparse representation (LRASR)
first applies K-means clustering, then in each cluster pix-
els with RX values less than a given threshold are selected
to form the background dictionary. In [26], the collabo-
rative representation-based with outlier removal anomaly
detector (CRBORAD) calculates the maximum and mini-
mum intensity thresholds, the pixels outside these thresholds
are excluded as anomaly interferences. In [27], the sparse
representation-linear spectral mixture model based detector
(SR-LMM) alleviates anomaly contamination by introducing
a sufficiently small parameter as the upper bound of the
representation coefficients. In addition, there are some algo-
rithms that first use a matrix decomposition-based method
to extract the low-rank background component and then
employ the background component for background dictio-
nary construction.

All of these strategies are dedicated to constructing a
background dictionary with no anomaly interferences, i.e.
excluding possible anomaly information from the dictionary.
These strategies convert an HSI as a 2D matrix composed
of independent spectral vectors and then choose the pixels
with the most background spectral characteristics as dic-
tionary atoms. In this way, only spectral anomalies can be
excluded from the background dictionary, whereas spatial
anomalies still retained. Intuitively, if we permute the spatial
coordinates of all pixels in an HSI, i.e., remove the spa-
tial characteristics (interactions and relationships between
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pixels), the dictionary construction result obtained by these
methods will not be changed. That is, only the spectral
characteristics of HSI are used for background dictionary
construction, whereas the spatial characteristics are wasted
due to the matrix conversion. For example, if there is an
anomaly target whose spectrum is similar to that of one
background material, the anomaly is likely to be included
in the background dictionary. Such spatial anomalies will
weaken the purity and representativeness of the background
dictionary and eventually lead to serious missed detection.
Therefore, it is clear that if the differences in spatial charac-
teristics between background pixels and anomalies are also
exploited (anomalies are different from background pixels in
both the spectral and spatial domains), the background dic-
tionary constructed is spectrally and spatially pure. By using
such a pure background dictionary, a more satisfactory AD
performance will eventually be achieved. There are some
points need to be further explained. The clustering operation
in [21] aggregates pixels with similar spectra into clusters,
thus utilizing the spectral (rather than spatial) information.
The local strategy used in [23] and [26] only analyzes the
spectral characteristics in a small region, whereas no spatial
constraints of pixels are explored. Both [23] and [27] use the
spectral differences between background pixels and anoma-
lies to exclude anomalies from the dictionary. In addition,
the background component extraction via RPCA or LRaSMD
is based on the low-rank property, which is derived from
the highly redundant prior of the background spectra [23].
Therefore, no spatial characteristics of HSI are employed in
these traditional background dictionary construction strate-
gies. How to exploit the spectral and spatial characteristics
of HSI simultaneously for purer background dictionary con-
struction is the main consideration of our paper.

In this paper, from the perspective of constructing a pure
background dictionary based on the spectral and spatial char-
acteristics of HSI, a novel AD algorithm through sparse
representation with tensor decomposition-based dictionary
construction and adaptive weighting (SRTDaAW) is pro-
posed. Tensor representation is an effective tool to preserve
and display the characteristics of data along different modes
simultaneously [28], [29]. An HSI can be represented as a
third-order tensor, where the height and width modes are for
the spatial characteristics and the spectral mode is for the
spectral characteristics [30], [31]. In this way, the original
HSI data are processed as a whole and no spatial structure
is broken. As a common tensor decomposition technique,
Tucker decomposition [32], [33] can be employed to separate
the background part and the anomaly part in both the spectral
and spatial domains. The background part is spectrally and
spatially pure and can be used to construct the background
dictionary for sparse representation. The anomaly part is also
pure and can be used to further improve the AD performance
through weighting. The proposed SRTDaAW includes three
main steps. First, HSI data are represented as a third-order
tensor, and Tucker decomposition is carried out to extract
the background part and the anomaly part along three modes.
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The extracted background part excludes the possible anomaly
signatures in both the spectral and spatial domains and is
therefore used for the construction of background dictionary.
Second, to make the background dictionary contain all back-
ground categories, the K -means++- clustering operation [34]
is applied on the background part to divide the background
into different clusters. Next, we select several pixels from
each cluster to form the background dictionary for sparse rep-
resentation. Such a background dictionary excludes anoma-
lies in both the spectral and spatial domains and contains all
the background categories, so a good initial AD result will
be achieved. Finally, an adaptive weighting matrix derived
from the anomaly part extracted by Tucker decomposition
is multiplied by the initial AD result to further improve the
distinction between background pixels and anomalies.

Our proposed algorithm has the following three main
highlights.

1) Use of tensor representation and Tucker decompo-
sition. Tensor representation allows the spectral and
spatial characteristics of HSI to be preserved. Tucker
decomposition separates the background and anomaly
parts of HSI from both the spectral and spatial domains,
thereby providing a pure background part for back-
ground dictionary construction.

2) K-means++ clustering operation. K-means++ clus-
tering largely guarantees that the background dictio-
nary used for sparse representation contains all the
background categories.

3) Adaptive weighting strategy. The weights are cal-
culated by performing KRX on the anomaly part
extracted by Tucker decomposition above. By weight-
ing, the response differences between background pix-
els and anomalies are amplified, eventually resulting in
an improved AD performance.

The important steps of our proposed algorithm are
extended below. Tensor decomposition techniques, mainly
including Tucker decomposition and CANDECOMP/
PARAFAC decomposition (CPD), have been successfully
applied to HSI data processing in recent years for fea-
ture extraction, classification, and image compression.
For the low-rank tensor decomposition-based anomaly
detector (LTDD) proposed in [35], the HSI data cube is
first decomposed as a dense low-rank tensor plus a sparse
tensor, as modeled by tensor robust PCA (RPCA). Then,
the low-rank tensor is processed by Tucker decomposition to
obtain the core tensor, which is treated as the ““support” of the
anomaly spectral signatures. The tensor decomposition-based
detector (TenB) proposed in [28] performs AD directly on
the anomaly part extracted by Tucker decomposition. In [33],
a AD weighting strategy based on tensor decomposition and
cluster weighting (TDCW) is proposed. The background
information is first removed from the HSI by Tucker decom-
position, then each pixel is assigned a weight based on the
eight-connected domains (the eight most adjacent positions
of pixels in space) division of the decomposed anomaly
tensor. In addition, for the anomaly detector based on CPD
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with spectral and spatial partitioning (SSP_CPD) proposed
in [36], the original HSI is divided into a set of smaller-sized
subtensors, in which the CPD is then applied to extract the
residual tensors. Detection is implemented on each residual
tensor and all the results are integrated to produce the final
result. Compared with the above four detectors, our proposed
algorithm does not discard the background part, thus hardly
losing any HSI information. The clustering operation is to
divide inhomogeneous pixels into different clusters accord-
ing to the spectral similarity between pixels, and is widely
utilized in the AD process. In [37], the proposed cluster
kernel RX (CKRX) employs a clustering operation to group
the background pixels into clusters, and then each pixel is
replaced with the center pixel (cluster’s center) of its corre-
sponding cluster. The calculation of KRX can be expressed as
the calculation between the test pixel and all cluster’s centers
by performing a fast eigendecomposition algorithm. This
detector is designed to simplify the complex computation
in KRX. The clustering operation in [37] aims to obtain the
cluster’s centers of pixels, while our algorithm tries to con-
tain all background categories in the background dictionary.
Adaptive weighting can improve the performance of AD by
assigning different weights to different pixels depending on
the characteristics of each pixel. For example, [38] designs an
eight-connected domain division-based weighting strategy to
suppress the background signatures in the sparse component
extracted by LRaSMD. The principle is that the more the
number of pixels counted in a homogeneous region obtained
by the eight-connected domain division, the more likely it
is that this region belongs to the background. [38] weights
the detection result by analyzing the spatial background
aggregation in HSI, while our algorithm performs weighting
by mining the anomaly information contained in the anomaly
part extracted by Tucker decomposition.

The innovations of our paper can be summarized as fol-
lows. Tucker decomposition is used to construct a back-
ground dictionary that is spectrally and spatially pure for
sparse representation. This is to our knowledge the first time
Tucker decomposition is being applied to purify the back-
ground dictionary for representation-based AD. The back-
ground part is employed for sparse representation and the
anomaly part is processed by KRX to generate the adap-
tive weighting matrix. In this case, both the background
and anomaly information contained in the HSI is exploited,
with almost no information wasted. The excavation of both
the background and anomaly information is rare in current
anomaly detectors. Most importantly, our algorithm takes full
account of the spectral and spatial characteristics of HSI, thus
achieving a satisfactory detection performance.

The remainder of this paper is organized as follows.
In Section II, the tensor representation and Tucker decompo-
sition of HSIs are briefly introduced. In Section III, a detailed
description of our proposed SRTDaAW is provided. The
experimental results and analyses on both synthetic and real
HSI datasets are presented in Section I'V. Finally, the conclu-
sions of this paper are drawn in Section V.
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Il. TENSOR REPRESENTATION AND TUCKER
DECOMPOSITION

In this section, we introduce some basic notations of tensors,
the third-order tensor representation of HSI, and the main
principles of Tucker decomposition.

A. THIRD-ORDER TENSOR REPRESENTATION OF HSI

An N-order tensor denoted by X e RI*2XXIN j5 3 gen-
eral multidimensional array, where I,(1 < n < N, nis
the mode index) is the size of X along mode-n [31], [32].
An arbitrary element in X is represented as X j,...;y (1 <
in < I,), where i, is the position of the element along
mode-n. A fiber of X 1is a vector extracted by fixing
all the indices except one. A slice of X is a 2D matrix
extracted by fixing all the indices except two. The mode-
n unfolding (matricization) of X is a 2D matrix obtained
by arranging the mode-n fibers as the columnbNand it
is represented by unfold,(X) = X € R itz li,
The mode-n rank of X is denoted by rank,(X), which is
the column rank of X(,. The mode-n product of X and
matrix U € R/* is a tensor defined as P = (X x,
U) € R’lX"'X’"*IXJS"HX”'X’N, whose element is (X x,
Wi iy i1 in. = fﬁ:lxqi iy iy - The Frobenius-norm

of X is defined as || X || = ik 1X G5 s k)|2.

An HSI cube can be represented as a third-order tensor
X e RiExlwxls where Iy, Iy, and I are, respectively,
the numbers of rows, columns, and spectral bands [33].
Unlike the traditional HSI processing methods that transform
data into a 2D matrix composed of spectral vectors, tensor
representation allows the 3-dimensional (3D) structure of HSI
to be preserved without destroying the spatial characteristics
of the data.

(Core tensol

G .

R/ Rl R

HSI data cube HSI tensor
FIGURE 1. lllustration of Tucker decomposition on an HSI.

B. TUCKER DECOMPOSITION FOR AD

Tucker decomposition [32], [39] is a commonly used tensor
decomposition model that decomposes an HSI tensor into
three factor matrices along three different modes plus a core
tensor:

X ~Gx;Ax;Bx3C

st: ATA=1; B'B=1;ClCc=1; )
where A € RIEXH ([ > Jy), B € RW*W(Iy > Jy), and
C e RIs*Is(Ig > Jg) are the factor matrices along the height,
width, and spectral modes, respectively. G € R/#>/w>Js jg
the core tensor, and | is the identity matrix. The columns of

A, B, and C are orthonormal. An illustration of the Tucker
decomposition on an HSI is given in Fig. 1. Element-wise,
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it is represented as:
S I

&jijajairji © Dinjy © Cisjy; (@)
h1=1j=1j3=1

Xiysinsis =

where the lowercase letters indicate the elements in
their corresponding uppercase letters. Equation (1) can be
formulated as:

min_ [|[X —G x; A x2B x3C|%
G;A;B;C

st:ATA=1; B'B=1;Cclc=1: (3)
Due to the orthogonality of factor matrices, the minimiza-
tion problem can be further converted to:

2
max leAT X2 BT ><3CT
A;B;C F

st: ATA=1; B'B=1;Cclc=1: 4)

The alternating least squares (ALS) algorithm [40], [41]
can be used to solve the optimization problem in (4), and
its main idea is that when the two factor matrices are fixed,
the remaining factor matrix can be obtained by the eigenvalue
decomposition method.

In fact, Tucker decomposition is a high-order PCA, and the
difference is that PCA extracts principal components (PCs)
only along the spectral mode whereas Tucker decomposition
extracts PCs along all the three modes. If J, < IL.(x €
{H; W; S}), the last I, —J, PCs along the corresponding mode
will be discarded [33]. The application of Tucker decomposi-
tion in this paper is to separate the background and anomaly
parts along the three modes, rather than dimension reduction.
Therefore, we set J, = L.(x € {H;W;S}). The PCs of
each factor matrix are sorted in the order their corresponding
eigenvalues decrease. The eigenvector is a measure of the
amount of information. Therefore, in each mode, the PCs
corresponding to the background information are ranked
before those corresponding to the anomaly information. The
background information exists in the first few important PCs
(major PCs), whereas the anomaly information is in the
remaining PCs (minor PCs). In this case, the background part
and the anomaly part can be distinguished in both the spectral
and spatial domains.

Ill. PROPOSED ALGORITHM

This section provides a detailed description of our pro-
posed SRTDaAW algorithm for hyperspectral AD. In the first
subsection, the extraction of the background part and the
anomaly part along the three modes is introduced. In the sec-
ond subsection, the K-means++ clustering operation is per-
formed on the background part to construct a background
dictionary containing all the background categories, and then,
the sparse representation is executed to obtain the initial
detection result. In the third subsection, an adaptive weight
matrix derived from the extracted anomaly part is applied
on the initial detection result. Finally, the framework of
SRTDaAW is given.
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A. EXTRACTION OF THE BACKGROUND PART

AND ANOMALY PART

Tucker decomposition allows the background and anomalies
to be separated in each mode, with the major PCs corre-
sponding to the background information and the minor PCs
corresponding to the anomaly information. For the height
mode, since the anomalies are small objects embedded in a
uniform background around them, the anomaly signatures
occupy only a few columns in the height mode unfold of
tensor X [28]. They take up less information and are therefore
located in the minor PCs of the factor matrix. The background
information is in the major PCs along the height mode. The
width mode is similar to the height mode. For the spectral
mode, Tucker decomposition is equivalent to PCA, where
the unimportant spectral information can be eliminated by
removing the last several PCs (minor PCs) [12]. In this case,
to separate the anomaly and background parts from X spec-
trally and spatially, it is necessary to determine the number
of major PCs along each mode, denoted as Ny, Nw, and Ng.
The energy cumulative method [42] or the elbow method [43]
is usually used to determine Ny, Ny, and Ng. However, since
the former requires an artificially specified ratio threshold
and has no clear physical meaning, the latter is adopted in
our algorithm. For one mode, the elbow method plots the
normalized eigenvalue curve and finds the point where the
eigenvalue drops suddenly, as distinguished by an angle in
the curve. Then, the number of eigenvalues before this point
is the number of major PCs along this mode, i.e., Ny, Ny,
or Ng.

In this way, each factor matrix is divided into two subma-
trices and the core tensor is divided into eight subparts. Eight
subtensors can be reconstructed, each of which has the same
size as X. For example, the subtensor corresponding to the
major PCs of the three modes is reconstructed in the following
manner:

T 111 = Grvg: vy 1:8s X1 Ay
X ZB:;I:NW X3 C:;I:NS: 5)

The other seven subtensors are denoted as T 112, T 121,
T 211> T 122, T 221, T 212, and T 222, where 1 and 2 respec-
tively indicate the use of major PCs or minor PCs along the
corresponding mode. Then, we can obtain the background
part tensor X g and the anomaly part tensor X 4 by:

Xp=Ti1

(6)
Xa =T

An illustration of the extracted background part and
anomaly part is shown in Fig. 2. These two parts are pure
because we separate them from both the spectral and spatial
domains. T y11 and T 2y respectively represent the pure
background and anomaly in both the spectral and spatial
domains. Other seven subtensors are not pure because they
mix both background and anomaly information simultane-
ously. For example, T 112 can neither be included in the
background part because it is different from the background
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i

Major PCs

| Background part

A G

HSI cube HSI tensor

Tucker decomposition

BT Anomaly part

Tensor reconstruction

FIGURE 2. Extraction of the background part and anomaly part.

Extracted background part
"
+

decomposition

Tensor

HSI data .
representation

Extracted anomaly part

FIGURE 3. Schematic diagram of the proposed SRTDaAW.

in the spectral characteristics nor can be included in the
anomaly part because it differs from the anomalies in the spa-
tial characteristics. To completely separate the background
part from the anomaly part in both the spectral and spatial
domains and ensure that they do not interfere with each other
(without any mixing), we adopt (6) to extract them. The
three modes are processed individually and simultaneously,
and the degree of freedom of the three parameters (Ny, Ny,
and Ny) is 3 [44]. Our algorithm can guarantee the purity of
the extracted background and anomaly parts to a large extent
for subsequent processing.

B. BACKGROUND DICTIONARY CONSTRUCTION

FOR SPARSE REPRESENTATION

Since the background part is spectrally and spatially pure,
it can be used to construct the background dictionary for
sparse representation. To cover all the background categories
in the background dictionary, the K-means++ clustering
operation is first performed to divide the background part into
K clusters. K-means++ clustering is an improved version of
K-means clustering [34]. K should be slightly larger than the
actual number of background material classes in the HSI to
ensure that the background dictionary contains enough back-
ground categories [25]. Then, we randomly choose 1/5 pixels
in each cluster to constitute the overcomplete background
dictionary D. Such a D excludes possible anomaly signatures

72126
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Adaptively weigh
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from both the spectral and spatial domains and covers all the
background categories, making it an excellent dictionary for
sparse representation.

For the purpose of AD, the sparse representation theory
states that the background pixels can be linearly reconstructed
by a few atoms in an overcomplete background dictionary,
whereas the anomalies cannot [45]. A general sparse repre-
sentation model for AD based on the constructed background
dictionary D is formulated as:

x=D +r; @)
where X is an arbitrary pixel in X, D is the constructed
background dictionary, and r is the reconstruction error.  is
the sparse coefficient vector, in which most of the entries are
zero. Therefore, the reconstruction error r can be employed
to measure the anomaly response of X. The optimization
problem is converted as follows:

sit |l llo < Ko; (®)

=argmin|[X—D |,

where K| is the upper bound of the sparsity level. The above
optimization problem can be solved by greedy pursuit algo-
rithms, such as the matching pursuit algorithm (MP) [46] and
the orthogonal matching pursuit algorithm (OMP) [47]. The
reconstruction errors of all pixels are normalized to 0—1, and
an initial AD result ¥ (x) for pixel X is obtained.
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Anomaly target

(b)

FIGURE 4. Synthetic dataset. (a) False color image of the entire scene and
the detection scene; (b) ground-truth map.

(b)

FIGURE 5. Urban dataset. (a) False color image of the entire scene;
(b) false color image of the detection scene; (c) ground-truth map.

C. ADAPTIVE WEIGHTING METHOD

To further enhance the distinction between background pix-
els and anomalies, the initial AD result is multiplied by an
adaptive weight matrix. In Section III-A, in addition to the
background part X g, the anomaly part X 4 is also extracted.
Since the background information is excluded from X4 in
both the spectral and spatial domains, X 4 has a simple com-
position and can be modeled as the anomaly signals with
noise. Under this condition, RX-based detection algorithms
are expected to detect the anomalies in X 4 because they are
good at detecting a target scene with a single background
distribution type or a target scene with noise. KRX projects
the HSI into a high-dimensional kernel space where the RX
is then executed. Compared with GRX and LRX, KRX [16]
is able to mine the rich nonlinear information contained in
the data, and its computation burden is acceptable. is the
width parameter in the Gaussian radial basis kernel func-
tion (GRB), and its influence on the detection performance
is analyzed in Section IV-E. Assuming that the normalized
response value of KRX for pixel Xis (X), the final AD result
is calculated by:

Vxi= x/-V.x: 9)
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FIGURE 6. San Diego 1 dataset. (a) False color image of the entire scene;
(b) false color image of the detection scene; (c) ground-truth map.

(a) (b)

FIGURE 7. San Diego 2 dataset. (a) False color image of the detection
scene; (b) ground-truth map.

The normalized response values of KRX on the anomaly
part extracted by Tucker decomposition are adopted as the
adaptive weights to be applied on the initial AD result. The
sparse representation on background part and the KRX on
anomaly part (weighting strategy) perform AD from a com-
pletely different perspective and exploit different character-
istics of HSI, their weighting can compensate each other
in detection effect through information fusion. Specifically,
sparse representation is a signal representation theory-based
algorithm that exploits the low-dimensional property of HSI
data, while RX is based on the statistical modelling of
the background. After weighting, the response differences
between background pixels and anomalies are amplified,
thereby further improving the AD performance.

D. FRAMEWORK OF THE PROPOSED ALGORITHM

The algorithm proposed is called the hyperspectral AD
through sparse representation with tensor decomposition-
based dictionary construction and adaptive weighting
(SRTDaAW). The main idea of SRTDaAW is to extract
the background part and the anomaly part through Tucker
decomposition, both of which are pure in the spectral and
spatial domains. The background part is used to construct
an overcomplete background dictionary for sparse repre-
sentation, while the anomaly part is used for adaptively
weighting to further improve the AD performance. The main
steps of SRTDaAW are summarized as Algorithm 1, and the
schematic diagram is shown in Fig. 3.

IV. EXPERIMENTS AND ANALYSES
In this section, we describe experiments performed on
synthetic and real-world HSI datasets to demonstrate the

72127



l E E E ACC@SS ' Y. Yang et al.: Hyperspectral AD Through Sparse Representation

0.6 0.7
» —»—Height mode @n —#—Height mod.
° ight mode
Zos ——Width mode 206 - Width mode
E 0.4 = Spectral mode] | E 0.5 —+—Spectral mode]
o o4
3} 5 0-
=03 32
.j"ﬂ) S| 03
= 02 o2
S
201 Z0.1
0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160
Number of eigenvalues Number of eigenvalues
() (b)
0.9 0.9
» 0.8 == Height mode 5 0.8 —e—Height mode
E 07 — Width mode S0 —+ Width mode
g [ = Spectral mode| s ——Spectral mode
£06 £06
5 5
505 505
=1
go4 Tos
< 0.3 =03
g E
g 02 02
0.1 0.1
0 0
0 50 100 150 189 0 50 100 150 186
Number of eigenvalues Number of eigenvalues
(© (d

FIGURE 8. Determine the number of major PCs along each mode for each dataset. For each dataset, the right figure shows the
details. (a) Synthetic dataset; (b) Urban dataset; (c) San Diego 1 dataset; (c) San Diego 2 dataset.
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FIGURE 9. Extracted background and anomaly parts for each dataset. For each dataset, the left is the background part and the right is the anomaly part.
(a) Synthetic dataset; (b) Urban dataset; (c) San Diego 1 dataset; (d) San Diego 2 dataset.
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FIGURE 10. 3D distribution maps of the selected dictionary atoms and anomaly signature. For each dataset, the top figure is for PCA-based method and
the bottom is for our Tucker decomposition-based method. (a) Synthetic dataset; (b) Urban dataset; (c) San Diego 1 dataset; (d) San Diego 2 dataset.

effectiveness and superiority of our proposed SRTDaAW map [45], are used to evaluate the AD performance. The ROC
for hyperspectral AD. Four commonly used evaluation indi- curve plots the relationship between the detection rate (DR)
cators, including the color detection map, receiver operat- and the false alarm rate (FAR) for all the thresholds. The
ing characteristic (ROC) curve [48], area under the curve closer the ROC curve is to the upper left corner of the coordi-
(AUC) [49], and normalized background-anomaly separation nate plane, the better the detection performance. The AUC
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Algorithm 1 Proposed SRTDaAW for Hyperspectral AD
Input: HSI data X; Parameters: number of clusters: K,
upper bound of the sparsity level: Ko, width parameter of
KRX:

1. Represent X as a third-order tensor X and perform
Tucker decomposition on X to obtain three factor
matrices and one core tensor.

2. Determine the number of major PCs along each mode
by the elbow method, and extract the background part
X p and the anomaly part X 4 by (6).

3. Perform K-mean++ clustering on X p and construct
the overcomplete background dictionary D.

4. Execute sparse representation on X g based on D to
obtain the initial AD result I.

5. Create the weight matrix  based on the response values
of KRX on the anomaly part X 4.

6. Multiply ! by to obtain the final AD result.
Output: Anomaly response map of X.

value refers to the entire area under the ROC curve. The
normalized background-anomaly separation map is drawn by
normalizing the detection values to O—1 and using a green
box and a red box to represent the distribution of background
detection values and anomaly detection values, respectively.
For each box, the central marker represents the median, while
the top and bottom edges are the upper and lower quartiles,
respectively. It reflects the background-anomaly separation
performance.

All the experiments are carried out using MATLAB 2016a
on a personal computer equipped with an Intel Core i3
3.70-GHz CPU, 8 GB memory, and 64-bit Windows 7.

A. DATASETS

The Synthetic HSI dataset in this paper is generated from
the Pavia Center (PaviaC) dataset collected by the reflective
optics system imaging spectrometer (ROSIS) sensor. The ini-
tial dataset covers the Pavia Center in northern Italy and has a
spatial resolution of 1.3 m. After removing the water absorp-
tion and low SNR bands, 102 spectral bands are retained.
As shown in Fig. 4(a), a subimage with 108 x 120 pixels
is cropped to generate the synthetic dataset, and we use the
43 pixels corresponding to the vehicles on the bridge and
the bare soil near the bridge pier as anomalies. The most
significant anomaly spectrum tis extracted and is then used to
generate the 20 synthetic anomaly targets on the right side of
the synthetic image. Using the linear mixing model (LMM),
a synthetic subpixel anomaly with spectrum X is generated
by fractionally implanting t with a specified abundance frac-
tion f into a given background pixel with spectrum b [50],
as follows:

X=f-t+.1—f/b: (10)

There are 27 anomaly targets that need to be detected,
among which the 20 synthetic anomaly targets are distributed

VOLUME 8, 2020

FIGURE 11. Influence of the adaptive weighting. Each row from top to
bottom represents the Synthetic dataset, Urban dataset, San Diego

1 dataset and San Diego 2 dataset, respectively. (a) Initial detection map
without weighting; (b) adaptive weight map; (c) final detection map after
weighting.

in 5 rows and 4 columns. For the synthetic anomaly targets in
each row, f remains the same and the anomaly sizes are 1 x 1,
2x1,1x2,and 2 x 2. For each column, f is 0.3, 0.5, 0.7, 0.9,
and 1.0 from top to bottom. The ground-truth map of the syn-
thetic scene is shown in Fig. 4(b). This experiment is designed
to evaluate the performance differences of SRTDaAW for real
and synthetic anomalies in the same scene.

The first real dataset is an urban area acquired by
the Hyperspectral Digital Imagery Collection Experiment
(HYDICE) airborne sensor [51]. It has a spectral resolution
of 10 nm and 210 spectral bands spanning wavelengths from
0.4 mto2.5 m. Aftereliminating the water absorption and
low SNR bands, 160 bands are available. The entire scene
occupies 307 x 307 pixels, and a subimage with 80 x 100 pix-
els in the upper right corner is cropped for experiments. Some
vehicles are considered as anomaly targets in this subimage.
False color images of the entire scene and the detection scene
as well as the ground-truth map are shown in Fig. 5(a) to
Fig. 5(c), respectively.

The second real dataset was collected by the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) sensor, and
it is an airport area in San Diego, CA, USA [52]. It has a
spatial resolution of approximately 3.5 m and 224 spectral
bands ranging from 0.37 mto2.51 m. After discarding the
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FIGURE 12. Color detection maps of all comparison detectors for the Synthetic dataset. (a) GRX; (b) LRX; (c) KRX; (d) CKRX; (e) DWEST; (f) CRD;

(g) SRD; (h) LRaSMD; (i) TenB; (j) TDCW; (k) SSP_CPD; (I) SRTDaAW.
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FIGURE 13. Quantitative comparison of all comparison detectors for the
Synthetic dataset. (a) ROC curves; (b) background-anomaly separation
maps.

water absorption and low SNR bands, 186 bands are retained.
A subimage with 80 x 80 pixels is cropped from the top left
corner of the entire scene, and it is denoted as San Diego 1 in
this paper. False color images of the entire scene and the
detection scene as well as the ground-truth map are shown
in Fig. 6(a) to Fig. 6(c), respectively. The third real dataset
was chosen from the bottom left corner of the entire San
Diego airport image. This dataset has 60 x 60 pixels and is
denoted as San Diego 2 in this paper. Some small aircraft are
the anomaly targets to be detected. The relevant information
of San Diego 2 is shown in Fig. 7.

B. VALIDITY OF THE BACKGROUND DICTIONARY
CONSTRUCTION METHOD

An ideal dictionary for sparse representation should exclude
anomaly signatures and include all the background categories
as much as possible [25]. In this section, the validity of our
background dictionary construction method is proven exper-
imentally. In addition, the background dictionary constructed
by PCA instead of Tucker decomposition in our algorithm is
compared. First, for each dataset, the numbers of major PCs
(i.e., Ny, Nw, and Ng) along the three modes are determined
by the elbow method, as shown in Fig. 8. To save space, for
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each dataset, the eigenvalue curves of the three factor matrices
are plotted in the same subfigure and the subfigure on the
right shows the details. It is worth noting that PCA employs
only the spectral mode in Fig. 8. Fig. 8 indicates that for these
four datasets, the main information (background signatures)
is contained in the first (1, 1, 1), (4, 4, 2), (3, 3, 2), (2, 2,
2) PCs, respectively. The eigenvalue curves for the height
mode and the width mode are similar because these two
modes have similar spatial characteristics. The reason why
the Ny, Ny, and Ny for the Synthetic dataset and San Diego
2 dataset are small is that the proportion of anomalies in these
two datasets is relatively large and the background compo-
sition is relatively simple. Consequently, for each dataset,
the values of Ny, Nw, and Ng are reasonably determined
for the subsequent extraction of the background and anomaly
parts.

Then, the background part and the anomaly part are
extracted by (6), depicted as Fig. 9. It is obvious that our
proposed Tucker decomposition-based method achieves a
satisfactory separation between background and anomalies.

If the entire background part X p is employed as the back-
ground dictionary, the number of atoms in the dictionary is
as large as N (NN is the number of pixels in the HSI). In this
case, the heavy computational burden of sparse representa-
tion caused by the large size of X p is a serious issue. Alter-
natively, if we randomly select some pixels from X p to form
the dictionary, there is no guarantee that each background
category is included. Therefore, we apply K-means++ clus-
tering [34], and from each resulting cluster we select some
pixels to serve as the background dictionary, then the sparse
representation is performed on the original HSI. Such a
background dictionary will exclude anomaly signatures spec-
trally and spatially and contains all background categories.
In Table 1, we compare the AD performance of sparse repre-
sentation using the three background dictionary construction
strategies described above on the four datasets. As we can see,
by employing the result of K-means++ clustering, almost all
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FIGURE 14. Color detection maps of all comparison detectors for the Urban dataset. (a) GRX; (b) LRX; (c) KRX; (d) CKRX; (e) DWEST; (f) CRD; (g) SRD;

(h) LRaSMD; (i) TenB; (j) TDCW; (k) SSP_CPD; (I) SRTDaAW.

TABLE 1. Performance comparison of sparse representation using different background dictionary construction strategies.

.. . Number of background categories in D
Dictionary construction strategy u grou gories

AUC of SRD Calculation time (s) of SRD

Synthetic ~ Urban  San 1 San 2

Synthetic Urban San 1 San 2

Synthetic Urban San 1 San 2

Dictionary using entire X g 4 6 5 3 0.9991
Dictionary with random atoms 3 4 4 3 0.9973
Dictionary with K -means++ 4 6 5 3 0.9991

0.9966  0.9967  0.9543 192.875 101.269  68.267  36.529
0.9949  0.9942  0.9539 19.887 17.520 12.005 5.221
0.9966  0.9967  0.9542 20.154 18.012 13.364 5.988

the background categories are covered. An outstanding AUC
value with an acceptable computational time is achieved. This
experiment supports the role of K -means++ clustering in our
proposed background dictionary construction strategy.

As we have mentioned, one of the most important charac-
teristics of Tucker decomposition is that it can separate the
background and anomaly parts along three different modes
simultaneously. To demonstrate the superiority of Tucker
decomposition over PCA, Fig. 10 shows the 3D distribu-
tion maps of the selected dictionary atoms and anomaly
signature for both the PCA-based method (the first row)
and our Tucker decomposition-based method (the second
row). The other steps remain the same except for the
background-anomaly separation operation. The 3D distri-
bution map of the LRaSMD (or RPCA or LRR)-based
method (not shown due to space constraints) is similar
to that of the PCA-based method. As shown, our Tucker
decomposition-based dictionary achieves better separation
between the dictionary subspace and anomaly signature,
which means that the anomaly signature is more thoroughly
excluded from the background dictionary. Such a background
dictionary is purer and guarantees an excellent performance
of sparse representation.

C. EFFECT OF THE ADAPTIVE WEIGHTING STRATEGY

The adaptive weight matrix derived from the extracted
anomaly part is designed to enhance the discrimination
between background pixels and anomalies and further
improve the detection performance. To intuitively illustrate
the influence of the weighting strategy on AD performance,
Fig. 11 shows the initial detection map obtained by SRD
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FIGURE 15. Quantitative comparison of all comparison detectors for the
Urban dataset. (a) ROC curves; (b) background-anomaly separation maps.

(Fig. 11(a)), the adaptive weight map (Fig. 11(b)), and the
final detection map after weighting (Fig. 11(c)) for each
dataset. Obviously, the weighting significantly suppresses
the false alarm points and makes the background uniform.
As expected, the response differences between background
pixels and anomalies are effectively enhanced, while the
computational burden is only slightly increased.

D. PERFORMANCE COMPARISON

In this section, the detection performance of SRTDaAW
is compared with that of eleven existing state-of-the-art
anomaly detectors, including GRX [10], LRX [11],
KRX [16], CKRX [37], DWEST [18], CRD [22], SRD [24],
LRaSMD [20], Ten [28], TDCW [33], and SSP_CPD [36].
For each detector, all the relevant parameters are set to be
optimal.
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FIGURE 16. Color detection maps of all comparison detectors for the San Diego 1 dataset. (a) GRX; (b) LRX; (c) KRX; (d) CKRX; (e) DWEST;
(f) CRD; (g) SRD; (h) LRaSMD; (i) TenB; (j) TDCW; (k) SSP_CPD; (I) SRTDaAW.

For the Synthetic dataset, the color detection maps of all the
comparison detectors are shown in Fig. 12. Some detectors
only perform well for real anomalies, whereas some others
are only good at detecting synthetic anomalies. Although
some detectors successfully identify most of the anomalies,
there are still serious false alarms corresponding to the bridge
in the scene. The performance of SSP_CPD is largely affected
by the image segmentation result. The proposed SRTDaAW
successfully detects almost all the anomalies, regardless of
their abundance fraction and size. The superior detection map
of SRTDaAW is mainly attributed to the Tucker decomposi-
tion (better separation between the background and anomaly
parts), K-means—++ clustering (comprehensiveness of the
background dictionary), and adaptive weighting (enhanced
anomaly recognition capability).

In addition, to quantitatively evaluate the AD performance,
the ROC curves and normalized background-anomaly sep-
aration maps of these comparison detectors are provided
in Fig. 13. As shown in Fig. 13(a), the proposed SRTDaAW
achieves the best ROC curve because it is closest to the
upper left corner of the coordinate plane. The detection
rate (DR) of SRTDaAW is as high as 0.72 when the false
alarm rate (FAR) is 0. SRTDaAW produces a better detec-
tion performance than other detectors when the 100% DR is
reached. To clearly display the background-anomaly separa-
tion map shown in Fig. 13(b), the name of each comparison
detector is indicated by its first three letters. For SRTDaAW,
the detection of anomalies in the background is easy due
to the large gap between the two boxes and the effective
suppression of the background responses.

For the real-world Urban dataset, the color detection maps
of all the comparison detectors are shown in Fig. 14. It can
be seen that our SRTDaAW is superior to the other detectors
in terms of background suppression and anomaly highlight-
ing due to its simultaneous mining of both the spectral and
spatial information. Most of the other detectors only use
the spectral characteristics for AD. The false alarms of the
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FIGURE 17. Quantitative comparison of all comparison detectors for the
San Diego 1 dataset. (a) ROC curves; (b) background-anomaly separation
maps.
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other tensor decomposition-based detectors are more severe
than those of SRTDaAW. Fig. 15 shows the ROC curves
and background-anomaly separation maps of these detectors.
In Fig. 15(a), the ROC curve of SRTDaAW is always higher
than those of the other detectors. The DR of SRTDaAW
reaches 1 when the FAR is approximately 0.008. Fig. 15(b)
shows that all the detectors except CKRX can achieve a
satisfactory separation between the background pixels and
anomalies. Our proposed SRTDaAW can effectively com-
press the background into a narrow range with low values and
achieve satisfactory anomaly extrusion from the background.

For the real-world San Diego 1 dataset, the detection maps
of all the comparison detectors are shown in Fig. 16. For
KRX, CKRX, CRD, SRD, and TDCW, although the anoma-
lies are clearly highlighted, the background is fluctuating and
there are some serious false alarms. Obviously, the detection
map of our proposed SRTDaAW is significantly better than
the other comparison detectors. A quantitative evaluation of
these detectors is shown in Fig. 17. Fig. 17(a) indicates that
most of the time, the ROC curve of SRTDaAW is located
above those of the other detectors, especially when the FAR
is small. The ROC curves of GRX, LRX, and TenB are the
worst because they are close to the lower right corner of the
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FIGURE 18. Color detection maps of all comparison detectors for the San Diego 2 dataset. (a) GRX; (b) LRX; (c) KRX; (d) CKRX; (e) DWEST;
(f) CRD; (g) SRD; (h) LRaSMD; (i) TenB; (j) TDCW; (k) SSP_CPD; (I) SRTDaAW.

coordinate plane, which is consistent with the observations
in the detection maps above. As shown in Fig. 17(b), our
SRTDaAW can effectively separate anomalies from the back-
ground to a large extent.
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FIGURE 19. Quantitative comparison of all comparison detectors for the
San Diego 2 dataset. (a) ROC curves; (b) background-anomaly separation
maps.

For the real-world San Diego 2 dataset, Fig. 18 shows the
detection maps of all the comparison detectors. Although
KRX and CKRX achieve a satisfactory recognition for
anomalies, the background responses in the upper right cor-
ner is too high. The poor performance of SRD may be
due to the fact that it only explores the spectral infor-
mation for dictionary construction. Although TenB and
TDCW are also based on Tucker decomposition, they only
employ the extracted anomaly part, whereas the back-
ground part containing most of the background informa-
tion is completely discarded. In addition, both the ROC
curves and the background-anomaly separation maps shown
in Fig. 19 demonstrate the better AD performance of our
proposed SRTDaAW.

Furthermore, the AUC values [49] of these comparison
detectors for these four HSI datasets are listed in Fig. 20.
Obviously, our proposed SRTDaAW achieves the maximum
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AUC value for both the synthetic and real-world datasets,
which further proves its superior AD performance. In addi-
tion, the calculation times (in seconds) of these compari-
son detectors on the specified simulation platform are listed
in Table 2. Since the OMP algorithm used to solve the opti-
mization problem of sparse representation requires multiple
iterations to converge, SRD and our proposed SRTDaAW
consume a relatively longer computation time than most of
the other detectors. LRX needs to traverse the local concentric
double window of each pixel and then perform RX in each
window, so its calculation efficiency is low. The calcula-
tion time of DWEST increases rapidly with the increase of
the window size, so DWEST is computationally inefficient
for the San Diego dataset. The calculation of SRTDaAW
is mainly spent on solving the sparse representation, while
tensor decomposition takes almost no time. Although the
calculation time of our proposed SRTDaAW is longer than
that of some others, it is still within an acceptable range.

E. PARAMETER ANALYSIS

Only three parameters need to be adjusted in our pro-
posed algorithm, indicating the stability and reliability of
SRTDaAW. The three important parameters include: (1) the
number of clusters: K; (2) the upper bound of the sparsity
level: Kp; and (3) the width parameter of the Gaussian radial
basis function in KRX: . In this section, the sensitivity
of the detection performance to these three parameters is
experimentally analyzed on each dataset.

First, we simultaneously analyze the effects of K and Ko
when is fixed to be optimal. Without any loss of generality,
K changes from 2 to 10 with an interval of 1, and K is set as
{2,3,4,5,6, 8, 10, 15, 20, 30, and 50}. By jointly varying
K and Ky, the AUC values are calculated, and the result is
shown in Fig. 21. It is apparent that most combinations of
K and Kj can achieve a satisfactory detection performance,
and the AUC is more sensitive to Ky than K. In fact, these
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FIGURE 20. AUC values of all comparison detectors for each dataset. (a) Synthetic dataset; (b) Urban dataset; (c) San Diego 1 dataset; (d) San
Diego 2 dataset.

TABLE 2. Calculation times of all comparison detectors for each dataset.

Times (s) GRX LRX KRX | CKRX | DWEST | CRD SRD |LRaSMD | TenB | TDCW | SSP_CPD | SRTDaAW
Synthetic | 0.1583 | 18.3375 | 2.8203 | 1.9041 | 27.5216 | 4.4347 | 19.9574 | 12.4206 | 0.5268 | 12.2799 | 4.7272 22.4823
Urban 0.2218 | 17.6239 | 2.3478 | 1.9873 | 25.9556 | 2.8304 | 13.3205 | 13.3415 | 0.3263 | 10.5631 5.0951 18.7664
San Diego 1 | 0.2046 | 209118 | 4.2110 | 2.8933 | 83.1943 | 4.9026 | 11.0305 | 8.5220 0.4351 | 9.3482 4.1775 15.8249
San Diego 2 | 0.1585 | 13.7166 | 2.2902 | 0.9293 | 44.3637 | 1.6783 | 4.3853 4.9902 0.4777 | 5.3629 6.1426 6.5022

AUC value
AUC value

FIGURE 21. AUC illustration of SRTDaAW under different combinations of K and K, for each dataset. (a) Synthetic dataset; (b) Urban dataset;

(c) San Diego 1 dataset; (d) San Diego 2 dataset.

1 1 1
7
0.8 0.8 0.8 ’

- K0=2: AUC(0.9993) . : . e NI - g
2 KO0=3: AUC(0.9994) 2 K0=2: AUC(0.9893) 2 P Koj}ﬁgg‘o o 48) 2 #{= Ko-2: AUC(0.9409)
S06 K0=4: AUC(0.9996) 5 K0-3: AUC(0.997) 206 i e AUCED'W”; 06 K0=3: AUC(0.9622)
[=ha =0 K0=5: AUC(0.9997) o K0=4: AUC(0.9979) g “" KO*SZ AUC(0.9966 a = KO0=4: AUC(0.9637)
S — K0=6- AUC(0.9996) 8 -+ K0=5: AUC(0.9989) S £ : AUC(0.9966) S -+ K0=5: AUC(0.9652)

= = o AuC = Fem — K0=6: AUC(0.9969) 3= -5
S04 — K0=8: AUC(0.9998) 3 - K0=6: AUC(0.9991) S 04k bl = Kos: AUG(09973) S o4 2 - K0=6: AUC(0.9663)
20. -+ K0=10: AUC(0.9998) 204 = K0=8: AUC(0.9993) Fo = & | . p 8 0.4 piadedl, = KO0-8: AUC(0.9664)

5] : . 51 a a2 <<+ K0=10: AUC(0.9972) 51 piif
o == K0=15: AUC(0.9996) =] **+* K0=10: AUC(0.9991) ° - == K0=15: AUC(0.9969) T j 13 KO0=10: AUC(0.9664)
—=K0=20: AUC(0.9996) == KO=15: AUC(0.9985) -! == K0-20: AUC(0.9969) s == K0=15: AUC(0.9658)
0.2 0 AUC(O. 02 == K0=20: AUC(0.9973) 02 v . 02 == K0-20: AUC(0.9651)
-+ K0=30: AUC(0.9996) - - -2+ K0=30: AUC(0.9967) .
K0-50: AUC(0.9995) -2+ K0=30: AUC(0.9955) K050, ATIC(0.96%) ++2+K0=30: AUC(0.9625)
2 K0=50: AUC(0.9948) - K0=50: AUC(0.9619)
0 0 0 3 2 1 0 0
10° 10 107! 10° 103 10" 10° 107 107 10 10 10° 10? 10" 10°
false-alarm rate false-alarm rate false-alarm rate false-alarm rate
(@) (b) (© (@)

FIGURE 22. ROC curves of SRTDaAW under different K, for each dataset. (a) Synthetic dataset, K D 4; (b) Urban dataset, K D 7; (c) San Diego 1 dataset,

K D 6; (d) San Diego 2 dataset, K D 5.

two parameters only affect the result of sparse representa-
tion, while the adaptive weight matrix is fixed with AUC
values of 0.9989, 0.9955, 0.9941, and 0.9306 for the four
datasets. For K, a small value (such as 2) is not enough to
ensure that the background dictionary for sparse representa-
tion contains enough background categories. An excessively
small Ky commonly causes some false alarms as even some
background pixels cannot be sparsely reconstructed by the
dictionary atoms. Conversely, a Ky too large usually leads

72134

to low DR because some anomalies can also be sparsely
reconstructed under a large Kj.

To show the influence of Ky on detection performance
more clearly, we fix the K value corresponding to the maxi-
mum AUC and then plot the ROC curves as a function of Kj.
As shown in Fig. 22, a moderate Ky can produce a satisfactory
detection result. However, it should be noted that a larger Ky
will bring a heavier computational burden. Therefore, after
comprehensive consideration, the reasonable ranges of K for
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FIGURE 23. AUC values obtained under different for each dataset. (a) Synthetic dataset; (b) Urban dataset; (c) San Diego 1 dataset; (d) San

Diego 2 dataset.

the four datasets are set as 4-20 (Synthetic), 5-15 (Urban),
5-20 (San Diego 1), and 5-20 (San Diego 2). Ko should not be
too small. The experiments fully demonstrate the robustness
of SRTDaAW to K and Kj. In our experiments, we choose
{K = 4, Ko = 8} (Synthetic), {K = 7, Ko = 8} (Urban),
{K =6, Ko = 8} (San Diego 1), and {K = 5, Ko = 8} (San
Diego 2) for the four datasets, respectively.

Then, the sensitivity of the detection performance of
SRTDaAW to is investigated when K and Ky are fixed
optimally.  is the width parameter of the Gaussian radial
basis function in KRX, and its value is set as {1, 5, 10, 20,
30, 40, 50, 80, 100, 500}. The relationship between AUC
value and is plotted in Fig. 23. Actually, the value of

only influences the adaptive weight matrix, whereas the
result of sparse representation is invariant. As we can see,
when exceeds 5, the detection performance is completely
insensitive to the changes in , indicating that SRTDaAW is
robustto for all four datasets. In our experiments, the values
of for all four datasets are set as 20.

V. CONCLUSION
In this paper, a novel hyperspectral anomaly detec-
tion algorithm through sparse representation with tensor
decomposition-based dictionary construction and adaptive
weighting is proposed. To exclude both the spectral and spa-
tial anomaly signatures from the background dictionary for
sparse representation, a Tucker decomposition-based back-
ground dictionary construction method is presented. First,
by determining the number of major principal components
along three different modes, we extract the background part
and the anomaly part as purely as possible. Then, based on
the result of K-means ++ clustering, a background dictio-
nary containing enough background categories and excluding
spectral-spatial anomalies is constructed. Such a background
dictionary largely ensures a good performance of sparse
representation. Furthermore, to further enhance the response
differences between background pixels and anomalies, the
result of KRX on the anomaly part extracted by Tucker
decomposition is employed as an adaptive weight matrix.
Extensive experiments on both synthetic and real-world
HSI datasets demonstrate the superiority of our proposed
algorithm over eleven state-of-the-art detectors. In addition,
the rationality and effectiveness of each step of the proposed
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algorithm are proved through experiments. Finally, parameter
sensitivity analysis illustrates that the proposed algorithm is
robust to relevant parameters within a wide range. Further
improvement in regard to computational efficiency will be the
focus of our future research.

REFERENCES

[11 A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging
spectrometry for earth remote sensing,” Science, vol. 228, no. 4704,
pp. 1147-1153, Jun. 1985.

[2] Z.Li, L. Huang, J. He, C. Liu, X. Shi, and D. Zhang, “A local potential-
based clustering algorithm for unsupervised hyperspectral band selection,”
IEEE Access, vol. 7, pp. 69027-69041, 2019.

[3] T. Wang, H. Zhang, H. Lin, and X. Jia, “A sparse representation method

for a Priori target signature optimization in hyperspectral target detection,”

IEEE Access, vol. 6, pp. 3408-3424, 2018.

L. Zhang, L. Zhang, D. Tao, and X. Huang, “Sparse transfer mani-

fold embedding for hyperspectral target detection,” IEEE Trans. Geosci.

Remote Sens., vol. 52, no. 2, pp. 1030-1043, Feb. 2014.

[5] N. M. Nasrabadi, “Hyperspectral target detection: An overview of cur-

rent and future challenges,” IEEE Signal Process. Mag., vol. 31, no. 1,

pp. 3444, Jan. 2014.

Y. Zhang, B. Du, L. Zhang, and S. Wang, “A low-rank and sparse

matrix decomposition-based mahalanobis distance method for hyperspec-

tral anomaly detection,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3,

pp. 1376-1389, Mar. 2016.

[7] A. Banerjee, P. Burlina, and C. Diehl, “A support vector method for
anomaly detection in hyperspectral imagery,” IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 8, pp. 2282-2291, Aug. 2006.

[8] F. A. Kruse, J. W. Boardman, and J. F. Huntington, “Comparison of

airborne hyperspectral data and eo-1 hyperion for mineral mapping,” IEEE

Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1388—1400, Jun. 2003.

D. Manolakis, D. Marden, and G. A. Shaw, ‘“Hyperspectral image process-

ing for automatic target detection applications,” Lincoln Lab. J., vol. 14,

no. 1, pp. 79-116, 2003.

[10] I S. Reed and X. Yu, “Adaptive multiple-band CFAR detection of an
optical pattern with unknown spectral distribution,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 38, no. 10, pp. 1760-1770, Oct. 1990.

[11] J. Chen and I. Reed, “A detection algorithm for optical targets in clut-
ter,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-23, no. 1, pp. 46-59,
Jan. 1987.

[12] A. Schaum, “Joint subspace detection of hyperspectral targets,” in Proc.
IEEE Aerosp. Conf., vol. 3, Mar. 2004, p. 1824.

[13] M. J. Carlotto, “A cluster-based approach for detecting man-made objects
and changes in imagery,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 2,
pp. 374-387, Feb. 2005.

[14] Q. Guo, B. Zhang, Q. Ran, L. Gao, J. Li, and A. Plaza, ‘“Weighted-RXD
and linear filter-based RXD: Improving background statistics estimation
for anomaly detection in hyperspectral imagery,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2351-2366, Jun. 2014.

[15] D. W.J. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and
A. D. Stocker, “Anomaly detection from hyperspectral imagery,” IEEE
Signal Process. Mag., vol. 19, no. 1, pp. 58-69, Jan. 2002.

[4

=

[6

—

9

—

72135



IEEE Access

Y. Yang et al.: Hyperspectral AD Through Sparse Representation

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

H. Kwon and N. M. Nasrabadi, “Kernel RX-algorithm: A nonlinear
anomaly detector for hyperspectral imagery,” IEEE Trans. Geosci. Remote
Sens., vol. 43, no. 2, pp. 388-397, Feb. 2005.

C.-1. Chang, “Orthogonal subspace projection (OSP) revisited: A compre-
hensive study and analysis,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 3, pp. 502-518, Mar. 2005.

H. Kwon, N. M. Nasrabadi, and S. Z. Der, “Adaptive anomaly detection
using subspace separation for hyperspectral imagery,” Opt. Eng., vol. 42,
no. 11, pp. 3342-3351, Nov. 2003.

E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, pp. 1-37, May 2011.

W. Sun, C. Liu, J. Li, Y. M. Lai, and W. Li, “Low-rank and sparse matrix
decomposition-based anomaly detection for hyperspectral imagery,”
J. Appl. Remote Sens., vol. 8, no. 1, May 2014, Art. no. 083641.

Y. Xu, Z. Wu, J. Li, A. Plaza, and Z. Wei, “Anomaly detection in hyper-
spectral images based on low-rank and sparse representation,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 4, pp. 1990-2000, Apr. 2016.

W. Li and Q. Du, “Collaborative representation for hyperspectral
anomaly detection,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 3,
pp. 1463-1474, Mar. 2015.

J. Li, H. Zhang, L. Zhang, and L. Ma, “Hyperspectral anomaly detection
by the use of background joint sparse representation,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2523-2533, Jun. 2015.
Y. Chen, N. M. Nasrabadi, and T. D. Tran, “‘Sparse representation for target
detection in hyperspectral imagery,” IEEE J. Sel. Topics Signal Process.,
vol. 5, no. 3, pp. 629-640, Jun. 2011.

Y. Yang, J. Zhang, S. Song, and D. Liu, “Hyperspectral anomaly detection
via dictionary construction-based low-rank representation and adaptive
weighting,” Remote Sens., vol. 11, no. 2, p. 192, Jan. 2019.

M. Vafadar and H. Ghassemian, “Anomaly detection of hyperspec-
tral imagery using modified collaborative representation,” IEEE Geosci.
Remote Sens. Lett., vol. 15, no. 4, pp. 577-581, Apr. 2018.

Q. Ling, Y. Guo, Z. Lin, and W. An, “A constrained sparse representation
model for hyperspectral anomaly detection,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 4, pp. 2358-2371, Apr. 2019.

X. Zhang, G. Wen, and W. Dai, “A tensor decomposition-based anomaly
detection algorithm for hyperspectral image,”” IEEE Trans. Geosci. Remote
Sens., vol. 54, no. 10, pp. 5801-5820, Oct. 2016.

Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Joint reconstruction and
anomaly detection from compressive hyperspectral images using Maha-
lanobis distance-regularized tensor RPCA,” IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 5, pp. 2919-2930, May 2018.

S. Yang, M. Wang, P. Li, L. Jin, B. Wu, and L. Jiao, “Compressive
hyperspectral imaging via sparse tensor and nonlinear compressed sens-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11, pp. 5943-5957,
Nov. 2015.

Q. Zhang, H. Wang, R. J. Plemmons, and V. P. Pauca, ““Tensor methods for
hyperspectral data analysis: A space object material identification study,”
J. Opt. Soc. Amer. A, Opt. Image Sci., vol. 25, no. 12, pp. 3001-3012,
Dec. 2008.

T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455-500, Aug. 2009.

L. Zhu, G. Wen, S. Qiu, and X. Zhang, “‘Improving hyperspectral anomaly
detection with a simple weighting strategy,” IEEE Geosci. Remote Sens.
Lett., vol. 16, no. 1, pp. 95-99, Jan. 2019.

D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in Proc. 18th Annu. ACM-SIAM Symp. Discrete Algorithms,
2007, pp. 1027-1035.

S. Li, W. Wang, H. Qi, B. Ayhan, C. Kwan, and S. Vance, “Low-rank
tensor decomposition based anomaly detection for hyperspectral imagery,”
in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2015, pp. 4525-4529.
X. Zhang, G. Wen, and W. Dai, “Anomaly detecting in hyperspectral
imageries based on tensor decomposition with spectral and spatial parti-
tioning,” in Proc. 8th Int. Congr. Image Signal Process. (CISP), Oct. 2015,
pp. 737-741.

J. Zhou, C. Kwan, B. Ayhan, and M. T. Eismann, “A novel cluster
kernel RX algorithm for anomaly and change detection using hyper-
spectral images,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 11,
pp. 6497-6504, Nov. 2016.

L. Zhu, G. Wen, and S. Qiu, ‘“Low-rank and sparse matrix decomposition
with cluster weighting for hyperspectral anomaly detectiond,” Remote
Sens., vol. 10, no. 5, p. 707, 2018.

72136

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

[47]

(48]

[49]

[50]

(51]

(52]

Z. Huang, S. Li, L. Fang, H. Li, and J. A. Benediktsson, ‘“‘Hyperspectral
image denoising with group sparse and low-rank tensor decomposition,”
IEEE Access, vol. 6, pp. 1380-1390, 2018.

P. Kroonenberg, Three-Mode Principal Component Analysis. Leiden,
The Netherlands: DSWO, 1983.

L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear sin-
gular value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4,
pp. 1253-1278, Apr. 2000.

S.J. Qin and R. Dunia, “Determining the number of principal components
for best reconstruction,” J. Process Contr., vol. 10, no. 2, pp. 245-250,
Apr. 2000.

R. C. de Amorim and C. Hennig, “Recovering the number of clusters
in data sets with noise features using feature rescaling factors,” Inf. Sci.,
vol. 324, pp. 126-145, Dec. 2015.

X.Zhang and G. Wen, ““A fast and adaptive method for determining K1, K>,
and K3 in the tensor decomposition-based anomaly detection algorithm,”
1IEEE Geosci. Remote Sens. Lett., vol. 15, no. 1, pp. 3-7, Jan. 2018.

L. Zhu and G. Wen, “Hyperspectral anomaly detection via background
estimation and adaptive weighted sparse representation,” Remote Sens.,
vol. 10, no. 2, p. 272, 2018.

S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dic-
tionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3397-3415,
Dec. 1993.

J. A. Tropp and A. C. Gilbert, ““Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655-4666, Dec. 2007.

J. Kerekes, “Receiver operating characteristic curve confidence intervals
and regions,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 251-255,
Apr. 2008.

T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861-874, Jun. 2006.

M. S. Stefanou and J. P. Kerekes, ““A method for assessing spectral image
utility,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 6, pp. 1698-1706,
Jun. 2009.

US Army Corps of Engineers, Alexandria, VA, USA. [Online]. Available:
http://www.tec.army.mil/Hypercurbe

A. Taghipour and H. Ghassemian, ‘“Hyperspectral anomaly detection
using attribute profiles,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 7,
pp. 1136-1140, Jul. 2017.

YIXIN YANG received the B.S. degree in elec-
tronic science and technology from Xidian Univer-
sity, Xi’an, China, in 2014, where she is currently
pursuing the Ph.D. degree in optical engineering
with the School of Physics and Optoelectronic
Engineering.

Her research interests include hyperspectral
image processing, target and anomaly detec-
tion, low-rank and sparse representation, machine
learning, and feature extraction.

SHANGZHEN SONG received the B.S. degree
in electronic science and technology from Xidian
University, Xi’an, China, in 2014, where he is
currently pursuing the Ph.D. degree in physical
electronics with the School of Physics and Opto-
electronic Engineering.

His research interests include hyperspectral
image classification and target detection, low-rank
and sparse representation, and machine learning.

VOLUME 8, 2020



Y. Yang et al.: Hyperspectral AD Through Sparse Representation

IEEE Access

DELIAN LIU received the B.S., M.S., and Ph.D.
degrees from Xidian University, Xi’an, China,
in 2003, 2006, and 2008, respectively.

He is currently a Professor with Xidian Univer-
sity. His research interests include optical imag-
ing, nano-photonics, and remote sensing image
analysis.

JONATHAN CHEUNG-WAI CHAN received the
Ph.D. degree from The University of Hong Kong,
Hong Kong, in 1999.

From 1998 to 2001, he was a Research Scientist
with the Department of Geography, The Univer-
sity of Maryland, College Park, MD, USA. From
2001 to 2005, he was with the Interuniversity
Micro-Electronics Centre, Leuven, Belgium. From
2005 to 2011, he was with the Geography Depart-
ment, Vrije Universiteit Brussel (VUB), Brussel,

Belgium. From 2013 to 2014, he was a Marie Curie Fellow with Fondazione
Edmund Mach, Italy. He is currently a Senior Researcher and a Guest
Professor with the Department of Electronics and Informatics, VUB. His
research interests include land-cover classification with machine learning
algorithms, detailed mapping using hyperspectral data, and spatial and spec-
tral enhancement of satellite hyperspectral images.

VOLUME 8, 2020

JINZE LI received the B.E. degree from Xidian
University, Xi’an, China, in 2014, where he is cur-
rently pursuing the Ph.D. degree with the School
of Physics and Optoelectronic Engineering.

His research interests include IR sensor, optical
fiber humidity sensor, and optical fiber tempera-
ture sensor.

JIANQI ZHANG was born in 1960. He received
the B.S. degree in theoretical physics and the M.S.
degree in electronic physics and apparatus from
Xidian University, Xi’an, China, in 1982 and 1987,
respectively, and the Ph.D. degree in microelec-
tronics technology from Xi’an Jiaotong Univer-
sity, Xi’an, in 1998.

He is currently with Xidian University. His
research interests include electrooptical counter-
measures, virtual reality imaging systems, imaging

system performance evaluation, target and background radiation character-
istics, and remote sensing and digital image processing.

72137



