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ABSTRACT  

In the context of the growing impact of conceptual density funcQonal theory as one of the most successful 

chemical reacQvity theories, response funcQons up to second order have now been widely applied; in 

recent years, among others, parQcular aSenQon has been focused on the linear response funcQon and 

also extensions to higher order have been put forward. As the larger part of these studies have been 

carried using a finite difference approach to compute these concepts, we now embarked in (an extension 

of) an analyQcal approach to conceptual DFT. With the ulQmate aim of providing a complete set of 

analyQcally computable second order properQes, including the so8ness and hardness kernels, the 

hardness as the simplest second order response funcQon is scruQnized again with numerical results 

highlighQng the difference in nature between the analyQcal hardness (referred as hardness condiQon) and 

the Parr-Pearson absolute chemical hardness. The hardness condiQon is invesQgated on its the capability 

to gauge the (de)localizaQon error of DFAs. The analyQcal Fukui funcQon, besides overcoming the 

difficulQes in the finite difference approach in treaQng negaQvely charged systems, also showcases the 

errors of deviaQng from the straight-line behavior using fracQonal occupaQon number calculaQons. 

Subsequently, the so8ness kernel and its atom-condensed inverse, the hardness matrix, are accessed 

through the Berkowitz-Parr relaQon. RevisiQng the so8ness kernel confirms and extends previous 

discussions on how Kohn’s Nearsightedness of Electronic MaSer principle can be retrieved and idenQfied 

as the physicist’s version of the chemist’s “transferability of funcQonal groups” concept. The accurate, 

analyQcal hardness matrix evaluaQon on the other hand provides further support for the basics of 

Nalewajski’s charge sensiQvity analysis. Based on Parr and Liu’s funcQonal expansion of the energy 

funcQonal, a new energy decomposiQon is introduced with an order of magnitude analysis of the different 

terms for a series of simple molecules both at their equilibrium geometry and upon variaQon in bond 

length and dihedral angle. Finally, for the first Qme, the perturbaQon expansion of the energy funcQonal is 

studied numerically up to second order now that all response funcQons and integraQon techniques are at 
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hand. The perturbaQon expansion energies are in excellent agreement with those obtained directly from 

DFA calculaQons giving confidence in the convergence of the perturbaQon series and its use in judging the 

importance of the different terms in reacQvity invesQgaQons. 
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1. Introduc:on 

Since the growing development of conceptual density funcQonal theory (CDFT),1-9 also o8en referred to 

as density funcQonal reacQvity theory (DFRT),7 the theory has gained worldwide aSenQon as a firmly 

rooted chemical reacQon theory. Launched by Parr et al in the late 1970s,1, 10, 11 CDFT has been instrumental 

in providing sharp definiQons for a number of o8en well-known but o8en vaguely defined concepts such 

as electronegaQvity,10, 12 hardness…13, 14 enabling, in principle, their numerical evaluaQon. The central role 

in this endeavor and adopQng the most frequently used canonical ensemble (vide infra) is played by a 

series of response funcQons of the type (𝛿!𝐸 𝜕𝑁"𝛿𝑣(𝒓𝟏)𝛿𝑣(𝒓𝟐)…𝛿𝑣(𝒓𝒎′)⁄ ),15, 16 with 𝑛 = 𝑚 +𝑚′ , 

reflecQng the sensiQvity of the system’s energy to variaQons in the number of electrons and/or the external 

potenQal. Whereas in the early years of CDFT, most aSenQon was devoted to the first order derivaQves 

(the electronic chemical potenQal10 𝜇 and the density 𝜌(𝒓) itself), and two of the second order derivaQves, 

hardness13 [𝜕&𝐸 𝜕&𝑁⁄ ]' and the Fukui funcQon17, 18 𝛿&𝐸 𝜕𝑁𝛿𝑣(𝒓)⁄ = [𝛿𝜌(𝒓) 𝜕𝑁⁄ ]', the scope was later 

extended to some of the third order derivaQves, especially the dual descriptor19, 20 [𝛿𝑓(𝒓) 𝜕𝑁⁄ ]' , and 

gradually also to the “third” second order derivaQve, the so-called linear response funcQon 

[𝛿&𝐸 𝛿𝑣(𝒓)𝛿𝑣(𝒓′)⁄ ](, usually denoted as 𝜒(𝒓, 𝒓’).11, 21, 22 Although well known in its Qme or frequency 

dependent form in Qme-dependent DFT23-26 through the Casida equaQons,27, 28 the Qme-independent form 

received relaQvely liSle aSenQon due to computaQonal intricacies, the representaQon of this kernel and 

an adequate chemical interpretaQon of the results. Parallel progress was made in these three issues. The 

independent parQcle approximaQon derived from a coupled perturbed HF or KS approach was refined to 

a full (exact) DFT expression using funcQonals from the first four rungs of Jacob’s ladder of exchange-

correlaQon funcQonals.29 Different visualizaQon strategies were developed from radial distribuQon type 

plots for atoms to molecular iso-surfaces.29 The interpretaQonal progress is largely based on the idenQty 

that 𝜒(𝒓, 𝒓’)  can be wriSen as [𝛿𝜌(𝒓) 𝛿𝑣(𝒓′)⁄ ](  showing that the LRF provides informaQon on the 

variaQon of the electron density at posiQon 𝒓  when the external potenQal at posiQon 𝒓’  is changed, 
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obviously a key issue when evaluaQng chemical reacQvity. This has led to retrieving atomic shell 

structure,30-32 inducQve and mesomeric effects,33 aromaQcity and anQ-aromaQcity,34-36 electron 

delocalizaQon,37 up to deciphering its role in electrical conducQvity38 and formulaQng some iniQal results 

on reconciling the Nearsightedness of Electronic MaSer principle put forward by Prodan and Kohn 39, 40 

with the chemist’s funcQonal group concept.41 

Having now the analyQcal expression of the linear response funcQon 𝜒(𝒓, 𝒓′)  and its numerical 

comparison study on possible approximaQons as well as on different density funcQonals at hand, it is 

natural to think one step further and pass to the counterpart of the linear response funcQon in the grand 

canonical ensemble: the so8ness kernel 𝑠(𝒓, 𝒓))  defined as 𝑠(𝒓, 𝒓)) = [𝛿&Ω 𝛿𝑣(𝒓)𝛿𝑣(𝒓)⁄ )]* =

[𝛿𝜌(𝒓) 𝛿𝑣(𝒓))⁄ ]* ,11, 42, with Ω  being the so-called grand potenQal. Although already appearing and 

discussed in early literature by Parr and Yang and in their standard DFT treaQse11 the maybe most 

illuminaQng aspect of so8ness kernel emerged later on when Kohn and Prodan formulated their principle 

of nearsightedness of electronic maSer (NEM).39, 40 StarQng from their definiQon of nearsightedness: 

“…describing the fact that, for fixed chemical potenQal 𝜇, local electronic properQes, such as the density 

𝜌(𝒓) , depend significantly on the effecQve external potenQal 𝑣(𝒓)  only at nearby points” a close 

relaQonship with the so8ness kernel emerges. The basic ingredients are indeed idenQcal: working at 

constant chemical potenQal and observing the variaQon of 𝜌 with 𝑣  ask for checking if 𝑠(𝒓, 𝒓′) decays 

quickly upon increasing distance between 𝒓 and 𝒓′. Since different ensembles are related by Legendre 

transformaQons, the so8ness kernel can be evaluated starQng from the linear response funcQon via the 

Berkowitz-Parr relaQon (vide infra).42 Given the fact that this relaQon requires informaQon not only for the 

linear response funcQon but for also the Fukui funcQon at 𝒓  and 𝒓)  and the hardness, in order to 

quanQtaQvely achieve such relaQon, we would need to formulate analyQcal expressions for all the second 

order CDFT quanQQes in order to evaluate the so8ness kernel via the Berkowitz-Parr relaQon. Some iniQal 

work along these lines, with results poinQng into the expected direcQon, has been presented by one of 
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the present authors,41 the aim of the present study is however broader pertaining analyQcal evaluaQon 

and use of all second derivaQves in different contexts. 

In the present work, we first formulate the analyQcal expression for all CDFT descriptors up to the second 

order in the canonical ensemble in a uniform way, thereby compleQng previous expressions.29, 43 Before 

going directly to the so8ness kernel, we first invesQgate in detail the behavior of the two others second 

order derivaQves i.e., the hardness and Fukui funcQon for which the use of an analyQcal expression was 

scruQnized in the literature only in a very limited number of cases. 

We disQnguish the physical significance of the chemical hardness as idenQfied by Parr and Pearson and 

the hardness condiQon from CDFT43 arising when evaluaQng analyQcally the second derivaQve of 𝐸 w.r.t. 

𝑁  as a consequence of the piecewise linear behavior of the 𝐸  vs 𝑁  curve.44 We demonstrate the 

applicaQon of this condiQon, which exact exchange-correlaQon funcQonals should obey, for the evaluaQon 

and design of these funcQonals. We then compare the results of analyQcal and finite difference methods 

for calculaQng the Fukui funcQon, examining the robustness of the widely used finite difference approach 

in assessing electrophilicity and nucleophilicity and relate some discrepancies to delocalizaQon errors. 

Passing then to evaluaQon of the so8ness kernel the NEM principle is scruQnized in a homologous series 

of subsQtuted alkenes and alkanes, compleQng the prior results in previous work menQoned above.29, 41 

The so8ness kernel availability then brings back to the forefront an older, actually less used reacQvity 

indicator, which can easily be obtained once the so8ness kernel is available, namely the hardness kernel 

which is just its inverse.11, 22, 45 Launched in the late 1980s by Nalewajski46, 47 in a semi-empirical context of 

MorQer’s electronegaQvity equalizaQon method (EEM),48 the eigenvalues and eigenvectors of the atom-

condensed hardness matrix lead to a normal mode type analysis where the different populaQon normal 

modes reflect charge transfer or polarizaQon phenomena when a system’s number of electrons changes. 

The availability of analyQcal so8ness matrices enables us to test the qualitaQve agreement for some 

selected cases with older literature data and further reflect on their physical content. 
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In the final secQon and with the availability of all first and second order CDFT quanQQes, we scruQnize in 

a numerical study, the first of its kind to the best of our knowledge, two expansions of the total energy. 

The context of the first one is the perturbaQon perspecQve usually adopted in CDFT following Parr’s iniQal 

ansatz (response of a system’s energy to perturbaQons in 𝑁 and/or 𝑣) (vide supra).1, 3, 11 The other one, 

launched by Liu and Parr which hitherto received less aSenQon, is a funcQonal expansion of 𝐸 in terms of 

𝑁 and 𝑣.49-51 In both cases numerical values for each term up to second order could now be evaluated 

enabling an order of magnitude analysis and an evaluaQon of the importance of the contribuQng terms. 

In the funcQonal Taylor expansion, a new CDFT based way of decomposing the total- unperturbed- energy 

is thereby obtained. The choice of systems is made in such a way as to combine simplicity and relevance 

for the study of the different topics menQoned above. 

The paper is structured as follows. SecQon 2, Methodology, gives all the formulas used for calculaQng the 

analyQcal CDFT descriptors as well as the ensemble transformaQons. Computa:onal Details are provided 

in SecQon 3. In SecQon 4, Results and Discussion, results are addressed and presented in the five different 

subtopics menQoned above: hardness and hardness condiQon (4.1), Fukui funcQon and delocalizaQon 

error (4.2), so8ness kernel and nearsightedness revisited (4.3), hardness kernel and electron populaQon 

modes (4.4) and perturbaQon expansion and energy decomposiQon (4.5). The capabiliQes of (analyQcal) 

second order CDFT and related extensions are thereby illustrated. SecQon 5, Conclusion, summarizes the 

results of the paper and explores the applicability and importance of analyQcal CDFT in future theoreQcal 

chemistry research. 
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2. Methodology 

In the larger part of the literature the second order conceptual DFT quanQQes are obtained following either 

the finite difference (FD) or fronQer orbital (FO) approximaQon. The chemical hardness is then wriSen as3, 

11, 13 

𝜂+, = -!"#.&-!/-!$#
&

         (1) 

𝜂+0 = 1%&'(.1)('(
&

         (2) 

which under certain condiQons are idenQcal.52 

The Fukui funcQon17 is given by 

𝑓+,. (𝒓) = 𝜌((𝒓) − 𝜌(.2(𝒓)        (3) 

𝑓+,/ (𝒓) = 𝜌(/2(𝒓) − 𝜌((𝒓)        (4) 

𝑓+0. (𝒓) = 𝜌3040(𝒓)         (5) 

𝑓+0/ (𝒓) = 𝜌5640(𝒓)         (6) 

Where the 𝐸(.2, 𝐸(/2, 𝜌(.2 and 𝜌(/2represent the energy and electron density of the caQonic and 

anionic system, the 𝑁 electron system being considered to be neutral, and the HOMO/LUMO orbital 

energy and density are denoted as 𝜀3040, 𝜀5640, 𝜌3040 and 𝜌5640. 

Considering closed shell systems for computaQonal simplicity compact analyQcal expressions for all these 

conceptual DFT quanQQes can be wriSen. For example, the well-known expressions for the first order 

derivaQves of the total energy 𝐸[𝑁, 𝑣(𝒓)], the chemical potenQal 𝜇 also known as the fronQer orbital 

energy 𝜀7, and the density 𝜌(𝒓) are11, 43 

>8-
8(
?
'
= 𝜇 = @𝜑7BℎD977B𝜑7E = 𝜀7       (7) 

> 8-
:'(𝒓)

?
(
= 𝜌(𝒓) = ∑ |𝜑>(𝒓)|&(

>?2        (8) 
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Where ℎD977  is the effecQve one-electron Hamiltonian, and φ@(𝒓) and 𝜀7  are the molecular orbital and 

fronQer orbital energies respecQvely. Using the coupled-perturbed Hartree-Fock (CPHF)53 or Kohn-Sham54 

(CPKS) approach for the second order CDFT descriptors, the linear response funcQon can be wriSen as43 

> 8-
:'(𝒓):'(𝒓*)

?
(
= 𝜒(𝒓, 𝒓)) = −4∑ (𝕄.2)>A,CD𝜑>(𝒓)𝜑A(𝒓)>A,CD 𝜑C(𝒓))𝜑D(𝒓))  (9) 

where the 𝕄 matrix for Kohn-Sham DFT is given by 

𝕄>A,CD = (𝜀A − 𝜀>)𝛿>C𝛿AD + 4(𝑖𝑎|𝑗𝑏) + 4(𝑖𝑎|𝑓EF(𝒓, 𝒓))|𝑗𝑏)    (10) 

Where we use indices 𝑖, 𝑗 … for occupied and 𝑎, 𝑏 … for virtual orbitals. The evaluaQon of the exchange-

correlaQon kernel 𝑓EF(𝒓, 𝒓))	and its integral for funcQonals including hybrid or other rungs in Jacob’s 

ladder55 can be found in Ref. 43. Different approximaQon schemes for the 𝕄  matrix have been 

systemaQcally invesQgated in our previous study. 

Using a similar notaQon, the Fukui funcQon can be wriSen in a condensed way as 

8-
8(:'(𝒓)

= 𝑓(𝒓) = B𝜑7(𝒓)B
& − ∑ (𝕄.2)>A,CD>A,CD 𝕂77,>A

77 𝜑C(𝒓)𝜑D(𝒓)   (11) 

with the 𝕂>A
77 matrix for Kohn-Sham DFT is defined as 

𝕂77,>A
77 = 4(𝑓𝑓|𝑖𝑎) + 4(𝑓𝑓|𝑓EF(𝒓, 𝒓))|𝑖𝑎)      (12) 

Similarly, the second derivaQve of 𝐸 with respect to 𝑁, wriSen in the case of closed shell Kohn-Sham DFT 

as 

>8
+-

8(+
?
'
= 𝜂 = 𝕂77,779GA −∑ (𝕄.2)>A,CD>A,CD 𝕂77,>A

77 𝕂77,CD9GA      (13) 

with 

𝕂77,779GA = (𝑓𝑓|𝑓𝑓) + (𝑓𝑓|𝑓EF(𝒓, 𝒓))|𝑓𝑓)       (14) 

𝕂77,CD9GA = (𝑓𝑓|𝑗𝑏) + (𝑓𝑓|𝑓EF(𝒓, 𝒓))|𝑗𝑏)       (15) 

Note that depending on the choice of the fronQer orbital 𝑓  (HOMO or LUMO) two quanQQes arise, 

corresponding to an electron release or electron uptake process with respect to the reference 𝑁 value. In 

view of the piecewise linear behavior of the 𝐸 = 𝐸(𝑁) curve both expressions become zero in the case of 
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the exact energy funcQonal. This demand has been termed the “hardness condiQon” in previous work by 

Yang and the present authors.43 Consequently, there are in fact two condiQons depending on the choice 

of the fronQer orbital. 

A word of cauQon should therefore be introduced. Parr and Pearson’s original idenQficaQon of the 

chemical hardness13 was based on a quadraQc 𝐸 = 𝐸(𝑁)  curve thereby avoiding the derivaQve 

disconQnuity problem arising from the piecewise linearity of this curve. Their idenQficaQon, leading to the 

well-known finite difference Eqn. 1 has gained widespread use and has been extremely useful in various 

domains of chemistry, thereby o8en bridging the theoreQcian’s and experimentalist’s worlds.1-9 Its 

importance can hardly be overesQmated. It is therefore not our aim to discard this venerable approach 

(see also Ref. 8 for a recent discussion) but simply point out that, when adopQng an internally consistent 

analyQcal approach, the expression corresponding with the second 𝐸 vs. 𝑁 derivaQve in fact boils down 

to the hardness condiQons which, on themselves, deserve closer inspecQon as will be done in the present 

study. 

Equa:ons 10, 12, 14 and 15 can also be easily extend to other methods as Hartree-Fock and different DFA 

funcQonals (for a recent criQcal account see Teale et al)56 varying from pure DFT funcQonals (LDA, GGA, 

meta GGA…) to hybrid and range-separated funcQonals (with modificaQons on the 𝑓EF  integral if exact 

exchange is also present).29 However, in order to evaluate the hardness condiQon 𝜂  for funcQonals 

including (part of) the exact exchange one needs to calculate the Fukui matrix57 𝑓(𝒓, 𝒓′) which is the 

derivaQve of the one parQcle reduced density matrix 𝜌(𝒓, 𝒓′) with respect to the number of electrons 𝑁. 

𝑓(𝒓, 𝒓)) = :H(𝒓,𝒓*)
8(

         (16) 

which considerably complicates the computaQonal aspects and will be the subject of a separate study. We 

therefore use, in the present study, only “pure” DFT funcQonals of the LDA, GGA and meta-GGA type. 
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To have access to the corresponding CDFT descriptors under the grand canonical ensemble characterized 

by the grand potenQal Ω = Ω[𝜇, 𝑣], related to the 𝐸 = 𝐸[𝑁, 𝑣] funcQonal via a Legendre transformaQon, 

the following expressions for the so8ness 𝑆 and the local so8ness 𝑠(𝒓) are well-known3, 11, 18 

𝑆 = 2
I

           (17) 

𝑠(𝒓) = 𝑆 ∙ 𝑓(𝒓)          (18) 

Finally, using the Berkowitz-Parr relaQon, the so8ness kernel 𝑠(𝒓, 𝒓′), defined as [−𝛿&Ω 𝛿𝑣(𝒓)𝛿𝑣(𝒓′)⁄ ]( 

in the grand canonical ensemble, can be obtained from the three second order derivaQves in the canonical 

ensemble 

𝑠(𝒓, 𝒓)) = 7(𝒓)7(𝒓*)
I

− 𝜒(𝒓, 𝒓))        (19) 

The hardness kernel 𝜂(𝒓, 𝒓’) defined as 𝛿&𝐹 𝛿𝜌(𝒓)𝛿𝜌(𝒓′)⁄  1, 22, 58yields a reciprocity relaQon with the 

so8ness kernel in the sense that ∫ 𝑠(𝒓, 𝒓))𝜂(𝒓, 𝒓′′)𝑑𝒓) = 𝛿(𝒓 − 𝒓′). 

Introducing the atomic overlap matrix 𝑆>CJ = ∫𝜑>(𝒓)𝜑C(𝒓)𝑤J(𝒓)𝑑𝒓  for the atoms-in-molecules 

condensaQon we then arrive at the atom-condensed versions of the linear response funcQon, 

𝜒JK = −4∑ (𝕄.2)>A,CD𝑆>AJ>A,CD 𝑆CDK        (20) 

the Fukui funcQon, 

𝑓J = 𝑆77J − ∑ (𝕄.2)>A,CD>A,CD 𝕂77,>A
77 𝑆CDJ        (21) 

and the so8ness kernel 

𝑠JK =
7,7-
I

− 𝜒JK         (22) 

Thereby introducing the so8ness matrix 𝒔 with the hardness matrix 𝜼 being its inverse 𝒔 = 𝜼.2. 
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3. Computa:onal Details 

All geometry opQmizaQons were performed at the B3LYP/cc-pVTZ level of theory59-62 with Qght 

convergence cutoffs using the Gaussian 16 A03 package.63 Subsequent single point DFA (density funcQonal 

approximaQon) calculaQons were carried out at the PBE/cc-pVTZ level of theory64 using the PySCF 2.1.1 

package.65, 66 Point group symmetry was turned on for all single point calculaQons as will be explained in 

the context below. NWChem 7.0.267 was employed to perform DFA calculaQons with fracQonal occupaQon 

number and the 3.8 development version of MulQwfn68 was then used to perform density and charge 

analysis. A Python program was built to compute all conceptual DFT quanQQes up to the so8ness kernel 

and the hardness kernel diagonalizaQon following the single point PySCF calculaQons. Libxc 5.2.369 was 

employed to calculate the exchange-correlaQon kernel 𝑓EF(𝒓, 𝒓′). The Becke-Lebedev quadrature was used 

for numerical integraQon using grids with 99 radial and 590 angular points.70 If not specified explicitly the 

evaluaQon of the exchange-correlaQon kernel is set to be the “full” expression i.e., for PBE funcQonal we 

calculated the 𝑓EF(𝒓, 𝒓)) up to GGA expansion, as described in Ref. 29. The standard Hirshfeld approach 

was chosen for the atom-in-molecules (AIM) parQQoning.71-73 All units used in this paper, if not specified, 

are atomic units. 
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4. Results and Discussion 

4.1 Chemical hardness and hardness condi:on 

The starQng equaQon in conceptual DFT is the energy funcQonal wriSen as a funcQon of the number of 

electrons. It is piecewise linear from 𝑁 − 1 to 𝑁 and 𝑁 to 𝑁 + 1, and so on, as displayed in Scheme 1a. 

So, it is natural to have double-sided derivaQves for instance as 𝜇±, 𝜂± but also 𝑓±, as the Fukui funcQon 

can also (cf. IntroducQon) be wriSen as [𝛿𝜇 𝛿𝑣(𝒓)⁄ ](.11, 74 As the first order derivaQve of 𝐸 with respect to 

𝑁 ,	𝜇 , gives a step funcQon the second order derivaQve 𝜂  should be zero on both sides which is the 

hardness condiQon. As a result, all response properQes including second or higher order derivaQve of 𝑁 

will in fact become zero for non-integer number of electrons 𝑁 ± 𝜆 for the exact funcQonal at 0K and are 

ill defined at integer values 𝑁, as illustrated in Scheme 1b. Again (vide supra) it is seen that the hardness 

calculated from Eqn. 13 is not the Parr-Pearson chemical hardness but the hardness condiQon. So, what is 

the real, chemical hardness of the system in view of the venerable Parr-Pearson expression and the 

concomitant maximum hardness principle (MHP)?3, 8, 75, 76 

As Yang et al. pointed out a simple way out is to use the fundamental gap, defined as 𝐼 − 𝐴 or, equivalently, 

the HOMO-LUMO gap as the hardness52 which aligns with Eqn. 1 and 2. Employing the 𝐼 − 𝐴  value 

(resulQng from a quadraQc 𝐸 = 𝐸(𝑁) curve) or the HOMO-LUMO gap is a sounder and chemically more 

meaningful candidate for chemical hardness than the hardness condiQon 𝜂±. The same strategy can also 

be used to obtain higher order 𝑁-derivaQves for example the hyper hardness 𝛾 = [𝜕M𝐸 𝜕𝑁M⁄ ]' yielding 

𝛾 = 𝜀5640 − 2𝜀3040 + 𝜀3040.2 , or mixed second order 𝑁 -derivaQves such as the dual descriptor. 

Equa:on 13 on the other hand allows for a (far from unique) measure to esQmate how much DFAs might 

differ from the exact funcQonal as will be discussed quanQtaQvely below. Along this line, the “sign problem” 

of chemical hardness can be simply resolved by sesng 2𝜂. = 2𝜂/ = 𝜀5640 − 𝜀3040 , a well-known 

pracQcal example of it in the literature being the two-parabola model proposed by Vela et al.77 Another 

way of addressing the derivaQve disconQnuity is to include temperature in the energy funcQonal 
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𝐸[𝑁, 𝑣(𝒓), 𝑇] and a lot of efforts in this field have been made by Ayers et al.78 The 𝐸  v.s. 𝑁  curve is 

smoothened by a not necessarily small temperature perturbaQon making it differenQable at the point 𝑁. 

In such way all response quanQQes are physically meaningful in theory but need to account for the 

temperature to which the system is exposed. 

To quanQfy things, we report in Table 1 the chemical potenQal 𝜇± (Eqn. 7), the hardness 𝜂 (Eqn. 2) and 

hardness condiQons 𝜂± (Eqn. 13) for a set of di- and polyatomic systems. In accordance with the Parr-

Pearson idenQficaQon the hardness represents the resistance of a species to change its number of 

electrons and through the maximum hardness principle, although to be used with cauQon, it indicates the 

relaQve stability of the system. The value for hardness condiQon determines the deviaQon from the exact 

condiQon (its value being zero) and allows to judge the extent to which the DFA (like LDAs and GGAs etc.) 

are affected by delocalizaQon errors, originaQng from the self-interacQon error (SIE).52, 79, 80 Therefore, the 

hardness condiQon can be used as criterion for evaluaQng the “quality” of the different density funcQonal 

approximaQons. As can be seen from the table, the values of the HOMO hardness condiQon 𝜂. at PBE/cc-

pVTZ level of the theory are always posiQve and amount to about 0.3 to 0.4 a.u. with different trends for 

varying series of compounds, which lend themselves not to a direct interpretaQon as moreover, here, a 

single funcQonal was used in this proof-of-concept part. This order of magnitude is important and can be 

compared with the typical value for the chemical hardness which rarely amounts to 0.5 a.u. The lack of 

correlaQon between the hardness condiQon and the chemical hardness with a correlaQon coefficient 𝑅& <

0.3  shows the fundamental difference between these two quanQQes, Fig. S1. The LUMO hardness 

condiQon 𝜂/ shows relaQvely similar results as 𝜂.,however, it gives negaQve values for the ionic systems. 

Deepening the content of Scheme 1a we now focus on the convex and concave features of most DFAs and 

the Hartree-Fock method showing a piecewise concave nature in the Hartree Fock case and in most DFAs 

a piecewise convex nature e.g., discussed in Refs. 80 and 81 respecQvely.80, 81 The overall posiQve values 

for the hardness condiQon are in line with a piecewise convex behavior, which is usually aSributed to a 
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delocalizaQon error yielding lower (relaQve) energies than it should be. On the other hand, the very few 

negaQve condiQon values (ionic systems on the electron abundant side) imply a concave behavior which 

indicates electrons are “too localized” for PBE in these few cases. To further use the hardness condiQon in 

evaluaQng density funcQonals, a first test in Table 2 exhibits the total atomizaQon energy ∑𝐷9 (TAE) and 

the two hardness condiQons calculated for 19 commonly used pure density funcQonals including 2 LDA 

and 17 GGA funcQonals for water.82 Although by going from LDA to GGA more accurate TAE values for 

water are obtained when comparing with the experimental result 0.371, hinQng at increasing quality, 

energy-wise, the hardness condiQons are not reduced significantly but rather show an increase of 𝜂/ for 

some funcQonals illustraQng that probably a test based on energy values evaluated only at integer 𝑁 may 

not be an adequate test. This observaQon is in line with the results by Hait and Head-Gordon80 in 

invesQgaQng the nature of (de)localizaQon error in the basis of energy evaluaQons at fracQonal number of 

electrons thereby mimicking the nature of the full 𝐸	 = 	𝐸(𝑁) curve. A study of the energy of fracQonally 

ionized H2O for a wide variety of funcQonals yielded quadraQc curvature coefficients 𝑎 (Ref. 80 Fig. 6), 

where the higher the 𝑎  value in their work means the larger the hardness condiQon 𝜂±  in our work. 

Among our selected funcQonals, the PBE family in Table 2 behaves beSer than LYP, and among all of them 

the “best” well-behaved funcQonal is PW91 which has both relaQvely small 𝜂. and 𝜂/ compared to others. 

Finally concentraQng on the expression for the hardness condiQon, Eqn. 13 shows that it is the difference 

between two terms, the first one involving two integrals comprising only the fronQer orbital considered 

and the second one, resulQng from a matrix mulQplicaQon with matrix elements involving all orbitals 

(occupied and unoccupied). For the exact funcQonal with 𝜂± = 0 they should precisely cancel each other. 

Also being noQced is the quadraQc term matrix mulQplicaQon 𝐊𝐢𝐚𝐓𝐌𝐢𝐚,𝐣𝐛𝐊𝐣𝐛 appearing in the expression of 

the hardness condiQon which remarkably coincides with what Hait and head-Gordon have observed 

previously in invesQgaQng the quadraQc behavior of the delocalizaQon error in fracQonal occupaQon 

number.80 
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4.2 Fukui func:on and density delocaliza:on error 

Given the analyQcal expression of the Fukui funcQon in Eqn. 11 and 12, the evaluaQon of the Fukui funcQon 

needs the fronQer orbital density B𝜑7(𝒓)B
&

 and its two-electron integrals exhibited in the 𝕂77,>A
77  matrix. 

For non-degenerated systems the chosen fronQer orbitals are unambiguously the HOMO and LUMO which 

then produce the two Fukui funcQon 𝑓.  and 𝑓/  as descriptors for nucleophilicity and electrophilicity 

respecQvely. For systems with HOMO or LUMO degeneracy the calculaQon of the analyQcal Fukui funcQon 

needs to specify the fronQer orbital(s) to be taken into account. For instance, as shown in Scheme 1c, for 

methane the HOMO is threefold degenerate whereas the LUMO is non-degenerate. Consequently, when 

evaluaQng 𝑓. with a symmetry broken calculaQon the fronQer orbital density and electron integrals will 

have different values due to spaQal asymmetry though the three degenerate HOMOs will in the end have 

the same orbital energy. As a result, it turns out, as we indeed observed, that at each Qme the calculaQon 

is re-done, the arbitrary chosen HOMO is changed on each occasion with correspondingly varying final 𝑓. 

values. For a simple and straightorward way of handling the degeneracy of fronQer orbitals, we can either 

manually average the three degenerate HOMOs of a symmetry broken calculaQon or turn on the point 

group symmetry using symmetry adapted molecular orbitals to ensure that the molecular orbital 

coefficients are perfectly symmetric. Degenerated perturbaQon theory may, of course, be used but turns 

out to be computaQonally more demanding.83 Therefore, throughout this work we always chose to turn 

on the point group symmetry constraint while performing single point calculaQons for the evaluaQon of 

Fukui funcQons as well as the hardness condiQon. Table 1 shows the Fukui funcQon for a set of di- and 

small polyatomic systems as reference data for forthcoming calculaQons and intermediate values for some 

of the present ones. Without going into detail previously discussed literature trends can be retrieved,1-9 

for example trends in the local so8ness values derived from these data. To compare properQes between 

different system, we indeed have to shi8 from the Fukui funcQon to the local so8ness 𝑠±(𝑟) = 𝑆 ∙ 𝑓±(𝑟) =
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𝑓±(𝑟) 𝜂⁄ ,1-3 where we have now used the Parr-Pearson chemical hardness. The local so8ness of the 

halogen atom decreases from HBr, HCl to HF with values 7.66, 6.46, 4.55 for 𝑠. and 5.15, 3.89, 1.82 for 

𝑠/. The same trend shows up for the lithium-halides LiBr, LiCl and LiF where the local so8ness of halogen 

atom decreases for both 𝑠. (10.64, 9.56, 7.25) and 𝑠/ (0.91, 0.58, 0.02), in line with what can be expected 

from the total so8ness/hardness of the halogens.11 Moreover, the local so8ness of carbon in ethane, 

ethylene and acetylene gives decreases from 2.98 to 2.80 and 0.85 for 𝑠. and from 2.75 to 2.62 and 0.69 

for 𝑠/, highlighQng the fact that triple bond is so8er than double and single bond. All trends align with 

those in polarizability 𝛼,84, 85 as might be expected from the established relaQonship between 𝛼 and 𝑆.86, 

87 

Of crucial importance in the present paper, however, is the comparison between the analyQcally derived 

Fukui funcQon and the finite difference approximaQon which has been used as the default method for the 

past decades. Fig. 1 displays the results of a detailed comparison between the analyQcal (Eqn. 21) and 

finite difference atom-condensed Fukui funcQon for benzene and subsQtuted benzenes with -O-, -NH2, -

OH, -OCH3, -SH, -CHCH2, -CH3, -Br, -Cl, -F, COOH, -CHO, -CN and -NO2 groups, which gained already, in its 

finite difference approximaQon, widespread aSenQon from the 1990s on.88 The computaQon of the 

condensed finite difference Fukui funcQon follows Eqn. 23 and 24. 

𝑓J. = 𝑞(.2J − 𝑞(J         (23) 

𝑓J/ = 𝑞(J − 𝑞(/2J          (24) 

Where q indicates the charge on the atom 𝐴 in the 𝑁, 𝑁 − 1 and 𝑁 + 1 electron system respecQvely. 

However, Scheme 1d shows it is necessary to be aware that benzene has both the two HOMO and LUMO 

are twofold degenerate so when taking away or adding an electron to the system, symmetry will be broken. 

Hence, in order to calculate the Fukui funcQon while ensuring a totally symmetric charge distribuQon (as 

it should be as the Fukui funcQon is the 𝑁-derivaQve of the totally symmetric electron density), we change 

two electrons at the same Qme to form a triplet caQon or anion. Figure 1a shows the linear correlaQon 
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between analyQcal and finite difference 𝑓. values with correlaQon coefficient 𝑅& = 0.970 with outliners 

mainly from carbon atoms at ortho- and meta-posiQon when an electron withdrawing group is aSached 

to the benzene ring. This disagreement can be explained by the different nature in evaluaQng the Fukui 

funcQon between analyQcal and finite difference method. In analogy with the piecewise linear behavior 

of the energy 𝐸(/S(𝒓) = (1 − 𝜆)𝐸((𝒓) + 𝜆𝐸(/2(𝒓), finally leading to hardness condiQon (vide supra), 

the electron density is a linear mixture of the 𝑁 and 𝑁 + 1 densiQes at fracQonal charge 𝑁 + 𝜆. 

𝜌(/S(𝒓) = (1 − 𝜆)𝜌((𝒓) + 𝜆𝜌(/2(𝒓)       (25) 

with 0 ≤ 𝜆 ≤ 1. For a comprehensive account on this type of relaQonships and condiQons up to third order 

see Ref. 87.89 Considering the evaluaQon of the Fukui funcQon at integer 𝑁 values, the dependence of the 

chosen fronQer orbital 𝑓 of the analyQcal expression in Eqn. 11 confirms its two-side derivaQve character 

at integer 𝑁 (vide supra). The finite difference result, however, uses the slope manipulaQng the integer 𝑁 , 

𝑁 + 1 and 𝑁 − 1 𝜌 values. Taking the 𝑁  derivaQve of Eqn. 25 under the exact funcQonal deriving we 

obtain 

𝑓(/S(𝒓) = 𝜌(/2(𝒓) − 𝜌((𝒓)        (26) 

showing that the two methods are idenQcal. To have a first look at the influence of delocalizaQon error, for 

𝐸 = 𝐸(𝑁), Table S1 gives the hardness condiQons for the systems studied in Fig. 1. Most of the electron 

withdrawing groups (EWG) show larger 𝜂. than the electron donaQng groups (EDG), except for -CN, which 

corresponds to the outliers in Fig. 1a of 𝑓.. Note that 𝑓. is in fact the most important Fukui funcQon to 

be considered in view of the nature of its most typical reacQon, the electrophilic subsQtuQon.88 For almost 

all subsQtuents, similar and relaQvely small 𝜂/ values are obtained that parallels the strong correlaQon of 

𝑓/ in Fig. 1b where the outlier, pertaining the O- subsQtuent, can of course be explained by the unstable 

double anion needed in the evaluaQon of the finite difference calculaQon. Note however that the analyQcal 

procedure can be applied in this case. Figure 2 further shows the comparison between fracQonal 

occupaQon from -0.1 to 0.1 (dashed line) and finite difference (solid arrow) calculaQon at ortho, meta and 
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para posiQon for selected well- and ill-behaved systems in Fig. 1. For well-behaved systems, Fig. 2a and 2c, 

the linearity obtained from fracQonal occupaQon is in line with the finite difference method, which 

indicates the 𝜌 vs 𝑁 curve is indeed piece-wise linear (Eqn. 25) in these cases, and as a result their Fukui 

funcQons are similar. As can be seen from Fig. 2b and 2d, however, the dashed line is below the solid arrow 

thus yielding a convex behavior for the 𝜌 vs 𝑁 curve similar to the  𝐸 vs 𝑁 curve, obtained with fracQonal 

occupaQon numbers, which causes the difference between the two approaches in calculaQng the Fukui 

funcQon. According to Eqn. 11 the Fukui funcQon can be wriSen as the difference between the fronQer 

orbital density, and a second term, which is again (cf. the hardness condiQon discussion) the result of a 

matrix product 𝐊𝐢𝐚𝐓𝐌𝐢𝐚,𝐣𝐛𝐒𝐣𝐛  involving al orbitals, occupied and unoccupied. This situaQon was already 

implicitly put forward in an alternaQve approach by Yang, Parr and Pucci,90 wriQng the Fukui funcQon as a 

fronQer orbital density term, the analogue of the fronQer orbital approach of the hardness in Eqn. 2, 

followed by a correcQon term involving orbital 𝑁-derivaQves. Since in pracQce the fronQer orbital density 

term is usually much larger in value than the second one, the overall result might indicate that the Fukui 

funcQon might be less sensiQve to the delocalizaQon error than the hardness. 

So, how to choose between the analyQcal and finite difference method in chemical reacQvity studies? 

Let us start from the fact that when the exact funcQonal is applied both the finite difference and the 

analyQcal method should give the same results due to the Fukui funcQon condiQon Eqn. 26. If the DFA, 

however, can give exact or highly accurate density for neutral and charged states the finite difference 

approach can then be preferable for pracQcal reasons, though requiring two calculaQons. On the other 

hand, DFAs with minor (de)localizaQon error are qualified for analyQcal invesQgaQons. So, the rule of 

thumb for the Fukui funcQon evaluaQon: pracQcally and in general, the finite difference approach should 

be more preferred except for the study of negaQvely charged systems (𝑓/ for anion) i.e., phenoxide ion in 

Fig. 1b where the analyQcal method is more reliable as discussed above. A combined evaluaQon of the 

finite difference and analyQcal Fukui funcQon may be recommended giving insight in the way the 
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delocalizaQon error affects the electron density. Going one step further the second order 𝑁-derivaQve of 

electron density :.-
8(+:'(𝒓)

= :+H(𝒓)
8(+

 i.e., the dual descriptor 𝑓(&)(𝒓) in scheme 1b.19, 20 might give further 

informaQon on the (de)localizaQon error with its the dual descriptor condiQon89 𝑓(&)±(𝒓) = 0 for non-

integer 𝑁 values similar to the hardness condiQon 𝜂± discussed in previous secQon Overall, the condiQons 

for local descriptors contain richer informaQon in their condiQons as they are to be saQsfied at each 𝒓, or 

even going further each 𝒓 and 𝒓’ combinaQon.89 

In analogy with the hardness, one, however, evidently can keep the chemistry of the well-known and 

widely accepted dual descriptor, by considering the finite different approximaQon19, 20, 91 and evaluate the 

dual descriptor by the difference between the 𝑓/  and 𝑓.  yielding 𝑓(&)(𝒓) = 𝜌(/2(𝒓) − 2𝜌((𝒓) +

𝜌(.2(𝒓) in analogy with the finite difference expression for the hardness (Eqn. 1). 

 

4.3 SoSness kernel and nearsightedness revisited 

The so8ness kernel, defined as the derivaQve of the electron density with respect to the external potenQal 

at fixed electronic chemical potenQal, matches closely the concept of the nearsightedness of electronic 

maSer (NEM), where it is stated that at fixed chemical potenQal the electron density at a point 𝒓𝟎 cannot 

“see” any perturbaQon at a point 𝒓’ beyond a given radius R with an accuracy larger than ∆𝜌, this value 

being a funcQon of 𝒓𝟎 and R, no maSer how large the perturbaQon is. For systems with a non-zero band 

gap (or chemical hardness) this leads to an exponenQal decay of the density as a funcQon of the distance 

between the point at which the perturbaQon is placed, 𝒓𝟎 and another point 𝒓. In the previous work this 

“physics” NEM principle was reconciled with the chemist’s transferability of funcQonal groups92 via the 

so8ness kernel with a few examples. In the present work extend the evaluaQon of so8ness kernel in the 

framework of analyQcal CDFT given above and provide some extra examples.41 Since for 𝑁-derivaQves 

CDFT response properQes are evaluated separately at the electron abundant and deficient side, converQng 

the linear response funcQon using the Berkowitz-Parr relaQon (Eqn. 22) gives rise to two so8ness kernels, 
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one from the electron deficient side 𝑠−(𝒓, 𝒓′) and another from the electron abundant side 𝑠+(𝒓, 𝒓′). For 

reasons of internal consistency, in an expression where sums of terms and products of factors are used, 

we always use the hardness condiQon when adopQng the Berkowitz-Parr relaQon as we will also do in the 

evaluaQon of the hardness kernel in secQon 4.4. For efficiency reasons, all calculaQons reported below 

employ the PBE/cc-pVDZ level of theory where the evaluaQon of the 𝑓𝑥𝑐(𝒓, 𝒓′) kernel for CDFT properQes 

is performed without considering the density gradient terms. Figure 3 shows the condensed so8ness 

kernel results for homologous series of 1-hydroxy subsQtuted linear alkanes and polyenes within the laSer 

case a saturaQng methyl group at the end of the chain. Detailed numerical results are presented in Table 

S2 and S3. Though showing oscillaQons  along the alkene chain Fig. 3a and 3b, the case of the longest 

chain (13 carbon atoms, n=6) reveals that the influence of the hydroxyl group along the chain, measured 

by considering the 𝑠0,Y0  so8ness kernel elements, is already strongly diminished a8er two carbons and 

nearly vanishes at posiQons further from the perturbaQon, but for the 𝑠/  and 𝑠. kernels. (The 𝑠/   being 

chemically more interesQng in view of the dominaQng mesomeric donor character of the OH group). The 

lower members of the homologous series hardly differ in their behavior except for a very slight, 

numerically unimportant rise, at the end of the chain which nicely converges to 0 for the largest chain (see 

insert). A similar behavior, shown in Fig. 3c and 3d, is observed in the saturated chains where the 

nearsightedness is now almost reached a8er one carbon, and the “edge effect” at the end of the chain is 

even much smaller than in the polyene case. Again, the two (HOMO and LUMO based) expression of the 

so8ness kernel 𝑠−(𝒓, 𝒓′) and 𝑠+(𝒓, 𝒓′) show the same extremely “local” behavior. The difference in faster 

decay in the alkane case can be traced back to the “inducQve-only” effect (in fact the 𝑠. kernel is here 

more relevant) as compared to the inducQve plus mesomeric effect in the polyene, knowing that an OH 

group has a stronger mesomeric donor than inducQve acceptor effect. As a comparison Fig. 2S gives the 

evoluQon of the linear response funcQon 𝜒𝑂,𝐶𝑛  for the same systems where the decrease in value is not as 

fast as in the so8ness kernel since it is not nearsighted as being evaluated not at constant electronic 
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chemical potenQal but at constant number of electrons in line with the very liSle data already available (2 

refs). The complete set of LRF data on the present studies is given in Table S4. Overall, our results are a 

further support29, 41 for the chemical translaQon of the Nearsightedness of Electronic MaSer principle as 

the electron density cannot “see” any more the change of external potenQal a8er a small number of 

carbons atoms. 

 

4.4 Hardness kernel and electron popula:on normal modes 

Having access to the so8ness kernel, the hardness kernel can be obtained by inverQng the so8ness kernel. 

The evaluaQon of the hardness kernel is, however, mathemaQcally problemaQc since, the so8ness kernel 

can have very small eigenvalues (e.g., upon extending the basis set the lowest eigenvalue is tending more 

to zero or even becomes zero, the kernel then becoming non-inverQble (for a detailed discussion see Ref. 

22). The problem can be avoided starQng from the atom condensed version of the so8ness kernel yielding 

a condensed hardness kernel or hardness matrix 𝜼𝑨𝑩
±  as its inverse. Note that just as in the case of the 

softness matrix, two hardness matrices are obtained with the present ansatz. The properties of this matrix 

were extensively studied by Nalewajski and coworkers in the context of their charge sensitivity analysis 

(CSA)46, 47 by using a semiempirical ansatz based on Mortier’s Electronegativity Equalization method.48 The 

present paper offers the possibility to retake this line of research but now starting from high quality DFA 

calculations. A key concept in Nalewajski’s work are the normal modes of electron population 

displacements, in short, the(electron) population normal modes (PNMs) of a system, defined, within the 

atoms-in-molecules resolution, as the eigenvectors 𝑼𝒓  of the hardness matrix. The corresponding 

eigenvalues ℎ^  are termed the principal hardness values and can be degenerate: more than one of the 

PNMs can correspond to a given ℎ. Note that the eigenvalues of the hardness matrix are the inverse of 

those of the softness in view of relationship 𝒔 = 𝜼.2 .22, 46 The eigenvectors can be grouped in an 

orthogonal matrix 𝑼 which diagonalizes the hardness matrix 𝜼 
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𝑼𝑻𝜼	𝑼 = 𝒉, (𝑼𝑻𝑼 = 𝑰)        (27) 

It turns out that PNMs can be categorized into charge transfer (CT) modes which deal with an overall in- 

or out-flow of electrons in/out of the system or polarization (P) modes with purely internal redistributions 

of electrons. 

Table 3 gives the two condensed hardness kernels or matrices 𝜼𝑨𝑩
±  obtained by inverQng the condensed 

so8ness kernel or matrix, and all PNMs with decreasing principal hardness ℎ  in the case of the H2O 

molecule. The corresponding Nalewajski diagrams of the PNMs are shown in Fig. 4 with the same 

sequence as the principal hardness in Table 3, where white and black circles stand for inflow and outlow 

of electrons respecQvely with the circle radius indicaQng the relaQve magnitude of such changes. Our 

results agree qualitaQvely with the one obtained by Nalewajski’s EEM based approach.46 The symmetry is 

idenQcal. The differences in circle radius are a consequence of the difference in level of theory between 

the original EEM method and the present “analyQcal” DFT ansatz. In the case of 𝜼𝑨𝑩.  two PNMs belong to 

the totally symmetric representaQon A2 of the C&` point-group, one to B2 as should be according to a 

symmetry analysis. That the PNM with highest principal hardness belongs to the totally symmetric 

representaQon was also found by Nalewajski. Moreover, all PNMs show the same overall characterisQcs 

as in Nalewajski’s work, though, of course, the picture is more refined through the appearance of two 

hardness matrices. For 𝜼𝑨𝑩.  it is not surprising that at this electron deficient side the so8est mode (Fig. 4 

top right) illustrates the oxygen tendency to donate electrons. On the other hand, the electron abundant 

side 𝜼𝑨𝑩/  shows an inversion in symmetry with the so8est mode (Fig. 4 lower right) being totally symmetric 

and where the hydrogens are likely to take electrons in this Charge Transfer type mode. That is consistent 

with the fact that upon reacQon, the oxygen atom is usually the electron donor, and because of its high 

electronegaQvity, the nearby hydrogens, which are acidic, have the potenQal to gain electrons. A second 

example of the representaQon of the PNMs for the two condensed hardness kernels can be found for 

pyrrole in Table S5 and Fig. S3 where similar interpretaQon can be applied. The new analyQcal formulaQon 
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of conceptual DFT provides a straightorward and clear access to the PNMs and related CSA concepts in a 

more refined view. With the two hardness matrices, it is now possible to scruQnize chemical reacQvity with 

dedicated PNMs on both the electron deficient and abundant side. 

 

4.5 Perturba:on expansion and energy decomposi:on 

Conceptual DFT and its response descriptors are widely known from its perturbaQve formulaQon, here 

wriSen up to second order3, 11 
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where the energy difference induced by changes in 𝑁 and 𝑣(𝒓) is formulated using a Taylor expansion in 

which the response funcQons discussed above appear in a natural way. 

In 1997, Liu and Parr49-51 proposed another expansion method within the framework of conceptual DFT by 

means of a funcQonal expansion of the total energy, which, however, has not yet been thoroughly 

invesQgated yet. Eqn. 29 gives this funcQonal expansion of the total energy in the canonical ensemble up 

to second order 
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Remark similariQes (appearance of the CDFT response funcQons) and differences (signs of the second 

order terms) with Eqn. 28. Furthermore, a constant appears which is not necessarily zero and depends on 

the system. On the basis of Eqn. 29 the total electronic energy — not its change under perturbaQon as in 

Eqn. 28 — can be decomposed into a sum of products and integrals involving CDFT descriptors. Each term 

on the right-hand side of Eqn. 29 corresponds to different energy contribuQons, which gives rise to a new 

energy decomposiQon approach (EDA) based on conceptual DFT (CDFT-EDA). 
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𝐸[𝑁, 𝑣] = 𝐶𝑜𝑛𝑠𝑡. +𝐸* + 𝐸H + 𝐸I + 𝐸7 + 𝐸a +⋯     (30) 

where the idenQficaQon of the terms is made by the corresponding response funcQon. As first order 𝑁-

derivaQves may be considered both from the electron abundant and the electron deficient side, the 

corresponding (+/- superscripted) energy contribuQons, for example 𝐸*  and 𝐸7 , should be used for 

considering the energy evoluIon upon perturbaQon of the number of electrons from the electron 

abundant or deficient side respecQvely. For the exact funcQonal under 0K limit, the energeQc contribuQon 

of (mixed) second- or higher-order 𝑁 -derivaQves reduces to zero (𝐸I± ). Unlike other EDAs (from 

Morokuma’s schemes presented in the 1970s93 to the Ziegler-Rauk energy decomposiQon analysis,94 as 

adopted among others in Bickelhaupt’s AcQvaQon Strain Model95 and Head-Gordon’s EDA based on 

absolute localized molecular orbitals96 and many others …) that divide the interacQon energy into a very 

limited number of contribuQons, CDFT-EDA expands the total energy into an infinite number of terms 

whose convergence should be invesQgated, though earlier consideraQons on its perturbaQon analogue 

Eqn. 28 give indicaQons that already a second order expansion as shown in Eqn. 29 most probably might 

yield saQsfactory results.8 Though through the appearance of the unknown constant term in Eqn. 30 a 

perfect numerical equivalence between the le8- and right-hand side of Eqn. 30 cannot be envisaged, the 

power of Eqn. 30 is that all other energy contribuQons from the right-hand side of the equaQon have a 

clear chemical interpretaQon, and therefore the chemical significance of Eqn. 30 should come from the 

invesQgaQon of each energeQc contribuQon of conceptual DFT, i.e. from comparing relaIve contribuQons. 

Remark that the expression in Eqn. 29 from the le8 and the right (electron deficient and abundant side) 

should converge to the same energy value if the expansion is complete. The idenQficaQon of the terms 

yield, for the pure 𝑣 -derivaQve terms, 𝐸H  as the electron-nuclear interacQon energy and 𝐸a  as the 

polarizaQon energy. The preponderant role of the linear response funcQon in polarizaQon phenomena has 

been known for some Qme and recently stressed by the present authors.97 The first order (mixed) 𝑁-



26 
 

derivaQve term can be re-wriSen as 𝑁 Qmes the derivaQve of the electrostaQc component 𝐸H with respect 

to 𝑁. 

𝑁∫ 8+-
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8(
     (31) 

In other words, the sensiQvity of the electron-nuclear interacQon energy to changes in the number of 

electrons. Finally, the first pure 𝑁 term, involving the electronic chemical potenQal bears strong similarity 

to the Gibbs free energy expression for a single component system wriSen as 𝑛 (number of moles) Qmes 

the chemical potenQal,98 replaced here by 𝑁 (number of electrons) Qmes the chemical potenQal. Coming 

back to the hardness term: in view of the preceding secQons the hardness condiQons should be used and 

similarly for the higher order 𝑁 terms89 (hyperhardness etc. where the corresponding condiQons again 

impose a zero value for non-integer 𝑁) so that, in a natural way, the series does not blow up for large 𝑁. 

In Table 4 we give the values for the different energy components for a few di-atomic and 10-electron 

systems at the equilibrium geometry where the hardness condiQon values are inserted, again for reasons 

of internal consistency. It is seen that the terms involving pure 𝑣  derivaQves, the electron-nuclear 

interacQon energy and the polarizaQon energy are strongly dominaQng, illustraQng the importance of the 

linear response funcQon in evaluaQng/discussing this type of schemes. The mixed 𝑁  and 𝑣  i.e., Fukui 

terms are, as compared to the LRF is smaller but sQll important, on the average 50% of that term, their 

difference between le8 and right derivaQve being non-negligible. With all reservaQons expressed above 

on the hardness term, its contribuQon on its turn is at most 50% of the Fukui funcQon term. Finally, the 

chemical potenQal term is by far the smallest one, being, very roughly, one or even two orders of 

magnitude smaller than the other first order 𝑁 - derivaQve term, 𝐸7 . Further research is needed to 

scruQnize trends in order of magnitude. Similar trends are found in the complete series, with a remarkable 

similarity between the two iso-electronic molecules CO and N2. Also, the 10-electron molecules show 

similar trends, most terms, in absolute value, show an increasing trend from CH4, NH3, H2O to HF. The 

strong increase in value when passing from HF, to HCl and HBr reflects the increasing polarizability of the 
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halogen (cf. secQon 4.1), whose role in the total energy expression is taken care of by the linear response 

funcQon (see also our recent findings on the role of the LRF in halogen bonds)97 Further research, now 

that the conceptual and computaQonal tools are available, should be performed in order to get a more 

refined view on this CDFT based energy decomposiQon. An open quesQon that remains is how to interpret 

the sign differences in the second order terms in the funcQonal expansion as compared to the perturbaQon 

expansion and give it a physical/chemical jusQficaQon. 

As an outlook we present an example of a different type considering the evoluIon of these energy 

components upon a chemical process. Fig. 5 illustrates changes of the different energy components upon 

bond stretching (up to 1.0Å) and compression (up to 0.3Å) of hydrogen fluoride with respect to equilibrium. 

As can be seen from the figure starQng from the le8 in Fig. 5, upon increasing bond length the electronic 

energy 𝐸9b , and its components 𝐸*" , 𝐸H , 𝐸7"  rise, while 𝐸I"  (for DFAs only) decreases whereas the 𝐸a 

curve shows a maximum. Judging the relaQve contribuQon of each energy component, the 𝑁-derivaQve 

terms are much smaller, one order of magnitude, than the 𝑣-derivaQve terms, not unexpected in view of 

the nature of the perturbaQon, which is a ∆𝑣 perturbaQon. The electron-nuclear interacQon energy 𝐸H 

and electron polarizaQon energy 𝐸a both experience a rapid increase before the equilibrium distance is 

aSained or, to put it otherwise, strongly decrease when the bond is compressed. Their opposite behavior 

for elongaQons larger than 0.2Å eventually leads to a slow rise in the total electronic energy at large 

distance. The mixing, Fukui funcQon term, is, not unexpectedly, in the middle range of the pure 𝑁 and 𝑣 

contribuQons. Figure 6 displays another chemical process characterized by a 𝛥𝑣 perturbaQon now driven 

by variaQon in angle: the dihedral rotaQon of H2O2 where the angle variaQon modulates steric effects. 

From the figure we observe that as the dihedral angle increases from 0 to 180 degrees, the by far most 

important and dominant change is the second order pure 𝑣 polarizaQon term 𝐸a the first order pure or 

mixed 𝑣-terms, 𝐸H and 𝐸7"  again being similar in magnitude as in the previous case but contribuQng much 

less to the overall energy change.  
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Returning finally to the perturbaQon expansion (Eqn. 28) the availability of all response funcQons at the 

same level of theory and the integraQon techniques described in SecQon 3 enables us to numerically 

evaluate all terms of the perturbaQon expansion up to second order for perturbaQons in 𝑣 or/and 𝑁. We 

again concentrate on HF by evaluaQng the total energy difference ∆𝐸 of the hydrogen fluoride bond upon 

stretching from the equilibrium distance by 0.1Å in steps of 0.01Å while simultaneously changing the 

number of (fracQonal) electrons from 0 to -1 and from 0 to +1. We thereby adopt the convenQons for 

electron abundant and deficient sides in the notaQon and the inserQon of the appropriate response 

funcQons in Eqn. 28. Where in Fig. 7 we compare the ∆𝐸9b(𝐶𝐷𝐹𝑇.) and ∆𝐸9b(𝐶𝐷𝐹𝑇/) values with the 

electronic energy denoted as ∆𝐸9b  obtained by a DFA calculaQons at the PBE/cc-pVTZ level of theory with 

fracQonal number of electrons. The ∆𝐸9b  surface is indicated with a blue-white-red color code, whereas 

the brown-white-green surface represents the ∆𝐸9b(𝐶𝐷𝐹𝑇)  obtained with the CDFT perturbaQon 

expansion up to second order in Eqn. 28 both for the electron abundant and deficient sides. The energy 

surface approximated from perturbaQon expansion based on the HOMO orbital ∆𝐸9b(𝐶𝐷𝐹𝑇.) gives an 

excellent result, beSer than LUMO orbital based ∆𝐸9b(𝐶𝐷𝐹𝑇/)  when comparing with the DFA 

∆𝐸9bsurface, though the 𝐸9b(𝐶𝐷𝐹𝑇/) is sQll very reasonable. 

The quality of the 𝐶𝐷𝐹𝑇.  results can be judged by observing in Fig. 7a the two surfaces are almost 

completely overlapping so that one of them is nearly invisible. Numerically, the mean absolute error 

between the energy values for all 121 data points is only 0.27eV with the maximum error equals to 0.89eV. 

This result is into the best of our knowledge one of the first, numerical, examples to show how in the case 

of small perturbaQons, the perturbaQon series up to second order, in parQcular 𝐸9b(𝐶𝐷𝐹𝑇.) already	

predicts very reasonable energy changes. The larger deviaQon for 𝐸9b(𝐶𝐷𝐹𝑇/)  is in line with many 

observaQons that the electron abundant side is less well described in CDFT due to the less accurate 

descripQon of the LUMO as compared to the HOMO.  
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Summarizing the findings in this secQon, expansions Eqn. 28 and 30 provide alternaQve and 

complementary views on the CDFT decomposiQon of the energy and its changes upon perturbaQons as 

occurring in chemical process which can, at least in principle, be refined by including higher order terms 

for which analyQcal expressions for the corresponding response funcQons have been formulated.89 
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5. Conclusion 

We have presented the basic equaQons for analyQcal conceptual DFT up to the second order, and then 

conducted a comparaQve study with the fronQer orbital approximaQon and finite different approach that 

have been widely used in the past decades. The role and the intricacies of the different condiQons resulQng 

from the piecewise linear behavior of the 𝐸 = 𝐸(𝑁) curve in this endeavor were highlighted, in parQcular 

for the hardness. The essenQal difference in the physical/chemical meaning between the Parr-Pearson 

chemical hardness and the hardness condiQon is stressed. The laSer offers a unique ability of evaluaQng 

the (de)localizaQon error in DFAs connecQng with literature data. On the other hand, numerical results for 

both the analyQcal and finite difference Fukui funcQons were shown to display, in most cases, only small 

differences in a series subsQtuted benzene. Further insight into the error was gained by tesQng the linearity 

of 𝜌 vs 𝑁 curve using fracQonal occupaQon number calculaQons. For general pracQcal purposes, the finite 

difference approach should be preferable, except for evaluaQng the Fukui funcQon for negaQvely charged 

systems. The nearsightedness of electronic maSer was revisited with the so8ness kernel for 1-OH linear 

alkane and polyene chains. The subsQtuQon effect along the carbon chain was retrieved both for the 

inducQve and mesomeric effect. Due to nearsightedness the so8ness kernel exhibited extremely “local” 

behavior compared to the linear response funcQon, drasQcally converging to zero a8er one or two carbon 

atoms. As a side result an extension was made by inverQng the condensed so8ness kernel, to obtain the 

hardness matrix, yielding a8er diagonalizaQon high level values for the corresponding analyQcal principal 

hardness and populaQon normal modes of Nalewajski’s charge sensitivity analysis. Finally, two approaches 

for conceptual DFT based energy expansion were scrutinized based on numerical values for each term up 

to second order thereby combining the analytical expressions for the response functions and the 

numerical integration tools. One is the well-known perturbation expression, and the other one is the 

functional Taylor expansion which hitherto received less attention. The latter one was used to set up a 

new, conceptual DFT based, energy decomposition scheme. A case study on diatomics and the well-known 
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series of ten-electron molecules showed that the energy components in this functional Taylor expansion 

contain potentially important information about molecular energetics, highlighting for example the 

importance of 𝑣-dependent terms. On the other hand, the perturbation expansion up to second order 

gave already fine results when compared to the electronic energy calculated via fractional occupation 

number. Both numerical studies are the first of their kind in the literature. Therefore, efforts in numerical 

studies should continuously be pursued to extract firmly based chemical insight from these energy 

decompositions. 

Summarizing, our results coming from analytical conceptual DFT not only provide new tools for reactivity 

studies including numerical data but also may be instrumental in scrutinizing the accountability of DFAs 

in DFT developments as such. 
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Table 1. List of CDFT quanQQes for di- and polyatomic systems where only the off-diagonal values are shown for the linear response funcQon and 
the so8ness kernel (the values for ethane, ethene and ethylene pertain the two carbon atoms). In the Fukui funcQons the heavy and light atoms in 
a given molecule are denoted by subscript 𝐴 and 𝐵 respecQvely. Hardness 𝜂 and hardness condiQon 𝜂± are obtained via Eqn. 2 and 13, respecQvely. 

Label 𝜇! 𝜇" 𝜂 𝜂! 𝜂" 𝑆 𝜒#$ 𝑠#$!  𝑠#$"  𝑓#! 𝑓#" 𝑓$! 𝑓$" 
LiH -0.1601 -0.0578 0.0512 0.2875 -0.7193 19.5429 1.0502 3.4295 -1.4107 0.6441 1.0181 0.3559 -0.0181 
LiBr -0.2056 -0.0702 0.0677 0.3130 -0.7135 14.7744 0.9412 2.0357 -0.0812 0.7202 0.0621 0.2798 0.9379 
LiCl -0.2133 -0.0667 0.0733 0.3451 -1.1119 13.6359 0.8310 2.0255 -0.2739 0.7013 0.0427 0.2987 0.9573 
LiF -0.2216 -0.0569 0.0824 0.4632 -1.6678 12.1402 0.6391 2.2800 -0.6201 0.5978 0.0016 0.4022 0.9984 

NaH -0.1552 -0.0670 0.0441 0.2484 0.0499 22.6808 1.3961 3.1572 0.0041 0.7219 0.9339 0.2781 0.0661 
NaBr -0.1863 -0.0860 0.0501 0.3011 -0.0336 19.9551 1.2408 3.0858 0.2050 0.6822 0.0786 0.3178 0.9214 
NaCl -0.1901 -0.0836 0.0533 0.3299 -0.1029 18.7762 1.1074 3.1018 -0.2050 0.6607 0.0506 0.3393 0.9494 
NaF -0.1808 -0.0755 0.0526 0.4250 -0.1514 19.0031 0.8880 3.8517 -0.8809 0.4758 0.9996 0.5242 0.0004 
CN- 0.0319 0.2822 0.1252 0.3389 0.3090 7.9898 1.2227 0.6500 0.6355 0.3751 0.3680 0.6249 0.6320 
N2 -0.3708 -0.0611 0.1549 0.4126 0.4088 6.4576 1.0030 0.6114 0.6114 0.5000 0.5000 0.5000 0.5000 
CO -0.3280 -0.0668 0.1306 0.4076 0.3841 7.6565 0.9296 0.6562 0.7478 0.2929 0.3242 0.7071 0.6758 
NO+ -0.8501 -0.5319 0.1591 0.4909 0.4940 6.2865 0.8499 0.6526 0.6919 0.3952 0.4312 0.6048 0.5688 
CO2 -0.3290 -0.0042 0.1624 0.3869 0.3746 6.1583 0.5722 -0.0068 0.1687 0.3788 0.2984 0.2423 0.4032 
SO3 -0.2996 -0.1278 0.0859 0.3143 0.3067 11.6401 0.5561 0.0685 0.3168 0.2017 0.3418 0.2661 0.2194 
HBr -0.2727 -0.0440 0.1143 0.3562 0.2452 8.7460 0.6055 0.3422 1.5113 0.8764 0.5893 0.1236 0.4107 
HCl -0.2915 -0.0254 0.1331 0.4003 0.2268 7.5154 0.5275 0.3781 1.3487 0.8599 0.5188 0.1401 0.4812 
HF -0.3345 0.0065 0.1705 0.6008 0.0263 5.8661 0.3826 0.6353 0.8745 0.7766 0.3110 0.2234 0.6890 

SiH4 -0.3130 0.0118 0.1624 0.2930 0.2281 6.1575 0.3572 0.0058 0.0274 0.3810 0.5129 0.1547 0.1218 
BF3 -0.3644 -0.0101 0.1772 0.3478 0.2965 5.6449 0.3347 -0.0587 0.1345 0.2738 0.1584 0.1786 0.5249 
H2O -0.2483 0.0085 0.1284 0.4772 0.1698 7.7876 0.3182 0.5980 0.4169 0.6212 0.2526 0.1894 0.3737 
NH3 -0.2148 0.0151 0.1149 0.4137 0.1635 8.7000 0.2567 0.4677 0.2026 0.5150 0.1973 0.1617 0.2676 
CH4 -0.3467 0.0308 0.1887 0.3732 0.1535 5.2991 0.2020 0.0767 0.0119 0.3009 0.2024 0.1748 0.1994 
C2H2 -0.2624 -0.0029 0.1297 0.3573 0.3033 7.7087 0.8120 0.3455 0.1751 0.3875 0.3578 0.1125 0.1422 
C2H4 -0.2473 -0.0317 0.1078 0.3162 0.2823 9.2792 0.5433 0.3038 0.1991 0.3021 0.2828 0.0989 0.1086 
C2H6 -0.2987 0.0241 0.1614 0.3057 0.1562 6.1954 0.1829 -0.0643 -0.1055 0.1384 0.1118 0.1205 0.1294 
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Table 2. Total atomizaQon energy ∑𝐷9  and hardness conditions 𝜂±  for H2O obtained by 19 common 
density functionals (with indication of their components) the first two being LDAs, the remaining ones 
GGAs. 

DFAs |𝐷9 𝜂. 𝜂/ exchange correlation 

SVWN5 0.4304 0.4782 0.1554 Slater VWN5 
SPW92 0.4301 0.4781 0.1553 Slater PW92 
BP86 0.3877 0.4755 0.1989 Becke88 P86 
PW91 0.3799 0.4768 0.1044 PW91 PW91 

BPW91 0.3741 0.4760 0.1945 Becke88 PW91 
mPW91 0.3766 0.4762 0.1706 mPW91 PW91 

PBE 0.3787 0.4772 0.1698 PBE PBE 
revPBE 0.3684 0.4765 0.1849 revPBE PBE 
RPBE 0.3669 0.4770 0.1619 RPBE PBE 
OPBE 0.3782 0.4778 0.1959 OPTX PBE 
HTBS 0.3748 0.4750 0.1682 HTBS PBE 
BLYP 0.3753 0.4771 0.2125 Becke88 LYP 
OLYP 0.3795 0.4788 0.2206 OPTX LYP 
KT1 0.3804 0.4695 0.1576 KT1 KT1 
KT2 0.3601 0.4711 0.1603 KT2 KT2 
KT3 0.3620 0.4748 0.2001 KT3 KT3 

HTCH407 0.3783 0.4805 0.0960 HTCH407 HTCH407 
HTCH147 0.3789 0.4780 0.1584 HTCH147 HTCH147 

HLE16 0.3828 0.4896 0.1656 HLE16 HLE16 
Exp.82 0.3710     
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Table 3. Condensed hardness kernel or hardness matrix 𝜂JK
±  using hardness conditions and the normal 

modes of electron population of water. The eigenvalues ℎ  and the corresponding eigenvectors 𝑼 
corresponding to the population normal modes (PNM) are tabulated in descending order of the 
eigenvalue. 

𝜂JK.  O H H 
O 0.7263 0.1075 0.1075 
H 0.1075 2.0165 0.1504 
H 0.1075 0.1504 2.0165 

PNM 1 2 3 
ℎ 2.1825 1.8662 0.6870 
𝑼𝑶 -0.1022 -0.0000 -0.9948 
𝑼𝑯 -0.7034 0.7071 0.0722 
𝑼𝑯 -0.7034 -0.7071 0.0722 
𝜂JK/  O H H 
O 1.0474 -0.1268 -0.1268 
H -0.1268 1.2032 -0.6630 
H -0.1268 -0.6630 1.2032 

PNM 1 2 3 
ℎ 1.8662 1.1044 0.4832 
𝑼𝑶 0.0000 0.9530 0.3029 
𝑼𝑯 -0.7071 -0.2142 0.6739 
𝑼𝑯 0.7071 -0.2142 0.6739 
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Table 4. Total electronic energy and energy components from the funcQonal expansion of conceptual DFT 
Eqn. 30. for di-atomic and 10-electron molecules selected from Table 1. 

Name 𝐸𝑒𝑙 𝐸𝜇−  𝐸𝜇+  𝐸𝜌 𝐸𝜂−  𝐸𝜂+  𝐸𝑓−  𝐸𝑓+  𝐸𝜒 
CH4 -53.92 -3.47 0.31 -120.07 -18.66 -7.67 38.23 25.05 56.53 
NH3 -68.45 -2.15 0.15 -155.90 -20.69 -8.18 42.20 28.44 77.44 
H2O -85.53 -2.48 0.08 -199.07 -23.86 -8.49 49.45 32.66 101.68 
HF -105.55 -3.34 0.06 -250.48 -30.04 -1.32 60.21 37.06 130.89 
HCl -467.64 -5.25 -0.46 -1109.21 -64.85 -36.74 134.32 105.19 318.75 
HBr -2587.41 -9.82 -1.58 -6178.68 -230.84 -158.89 476.93 393.26 1431.49 
N2 -133.21 -5.19 -0.86 -303.81 -40.44 -40.06 89.38 87.25 139.35 
CO -135.78 -4.59 -0.94 -311.07 -39.95 -37.64 83.06 81.60 146.83 
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Scheme 1. (a) schemaQc 𝐸	𝑣𝑠	𝑁  curves for exact funcQonal, most DFAs and Hartree-Fock method 
indicaQng piecewise-linear, -convex and -concave behavior respecQvely (b) analyQcal conceptual DFT 
“stairs” under 0K limit, blue and orange regions indicaQng zero and first order 𝑁-derivaQves, and white 
blocks are second or higher order 𝑁-derivaQves whose analyQcal evaluaQon is hampered by the derivaQve 
disconQnuity problem leading the corresponding “condiQons’’ (see text) (c) molecular orbital diagram for 
methane and (d) 𝜋 molecular orbital diagram for benzene. 

 

 

 

 

Figure 1. Linear correlaQon between Fukui funcQon (a) 𝑓. and (b) 𝑓/ calculated by both analyQcal and 
finite difference approach for benzene with different subsQtuents, outliners are highlighted (see text). 
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Figure 2. Behavior of Hirshfeld charge at ortho, meta and para posiQon with small fracQonal occupaQon 
number (up to +/-0.01; dashed line) for subsQtuted benzene systems: (a) -OH, (b) -CHO, (c) -CN and (d) -
NO2. The arrows point to the out-of-range caQon and anion values calculated with integer occupaQon. 
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Figure 3. Condensed so8ness kernel values 𝑠𝑂,𝐶𝑛
±  for 1-OH subsQtuted poly-alkenes (a), (b) and linear 

alkane (c), (d) chains with the perturbaQon fixed at the oxygen atom. 
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Figure 4. Nalewajski diagram of the normal modes of electron populaQon displacements for water with 
the same sequence as in Table 3, where the inflow and outlow of electrons is represented by white and 
black circles respecQvely. The circle radius denotes the relaQve magnitude of these changes. 
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Figure 5. Changes of the energy (black) and its components for HF upon bond compression or stretching 
using the funcQonal expansion of conceptual DFT Eqn. 30. Difference in distance w.r.t. equilibrium distance 
upon compression or elongaQon is given in abscissa (up to -0.3 and +1.0Å respecQvely). Le8 legend uses 
the energy scale at the le8, analogously for the right legend/scale. 
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Figure 6. Changes of the energy (black) and its components during the H2O2 dihedral rotaQon process from 
0 to 180 degree using the funcQonal expansion of conceptual DFT Eqn. 30. Le8 legend uses the energy 
scale at the le8, analogously for the right legend/scale. 
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Figure 7. Electronic energy difference ∆𝐸9b  of hydrogen fluoride calculated from DFA (PBE/cc-pVTZ) (blue-
white-red color code) compared to the second order Taylor expansion Eqn. 28 (brown-white-green color 
code) with fracQonal occupaQon from -1 to 1 and bond stretching from equilibrium 0.0 to 0.1Å. 
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