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Differentiable Optimization Layer with an
Interior Point Approach ?

Jayanta Mandi[0000−0001−8675−8178] and Tias Guns[0000−0002−2156−2155]??

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels {firstname.lastname}@vub.be

Abstract. Combinatorial Optimization has wide applications through-
out many industries. However, in many real-life applications, some or
all coefficients of the optimization problem are not known at the time
of execution. In such applications, those coefficients are estimated us-
ing machine learning (ML) models. End-to-end predict-and-optimize ap-
proaches which train the ML model taking the optimization task into
consideration, have received increasing attention. In case of mixed inte-
ger linear program (MILP), previous work suggested adding a quadratic
regularizer term after relaxing the MILP and differentiate the KKT con-
ditions to facilitate gradient-based learning. In this work, we propose to
differentiate the homogeneous self-dual formulation of the relaxed LP,
which contains more number of parameters, instead of the KKT condi-
tions. Moreover, as our formulation contains a log-barrier term, we need
not add a quadratic term to make the formulation differentiable.

Keywords: data-driven optimization · interior point method · neural
networks

1 Introduction

A combinatorial optimization problem maximizes (minimizes) an objective func-
tion respecting some constraints on the variables where some or all variables can
assume values from a discrete set. Applications of combinatorial optimization
abounds in operations research literature. However, in many real-life applica-
tions some or all coefficients of the optimization problem are not known. For
instance, in case of one-day ahead energy-aware scheduling, where certain ma-
chines need to be scheduled with the objective of minimizing energy cost, the
price of electricity is not known at the time of execution.

To address such a problem, in a predict-and-optimize approach a machine
learning (ML) model is used to first estimate those unknown coefficients before
solving the combinatorial problem. For instance, Cohen et al. [2] first predicted
future demand of products using an ML model and then use the predicted de-
mand to compute the optimal promotion pricing scheme.

One drawback of such a two-stage approach is the ML model fails to incorpo-
rate information from the optimization problem. Standard ML models generate
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predictions by leveraging historical and contextual data during model training,
when the models learn their parameters by minimizing the expected difference
between the generated predictions and the groundtruth. In the absence of an
interconnection between the ML and the optimization module, the ML model
learns its parameters without regard for the downstream optimization problem.

Hence, end-to-end predict-and-optimize approaches, which consider how ef-
fective the predicted values are to solve the optimization problem, have received
increasing attention. A standard ML model is trained by computing the gradi-
ents of the loss. The gradients indicate how much the model parameters need to
be changed in order to generate better predictions. The challenge in end-to-end
approach lies in passing the gradients to the ML model after computing the loss
using the optimization module.

In this work, we consider combinatorial optimization problems that can be
formulated as a mixed integer linear program (MILP). MILP has been used, to
tackle a number of combinatorial optimization problems, for instance, in organiz-
ing bike-sharing system [13], efficient micro-grid scheduling [9], sales promotion
planning [2] and more.

Previous work [16] proposed to compute the gradients by differentiating the
KKT condition of the relaxed version of the MILP. However, to execute this,
we have to add a quadratic regularizer term to the objective. In this work, we
instead, propose to differntiate the homogeneous self-dual formulation, which is
a common tool in modern interior point optimization techniques. We address
numerical challenges of this approach by proposing early stopping of solving the
LP. We also investigate whether differentiating the homogeneous self-dual for-
mulation of the relaxed LP, which contains more number of parameters, instead
of the KKT conditions, is more effective. Our empirical demonstrates the benefit
of differentiating the homogeneous self-dual formulation.

2 Problem Description

In the predict-and-optimize setting, the combinatorial problem is intertwined
with an ML model. To estimate the unknown parameters of the optimization
problem a predictive ML model fφ(χ) consisting of parameters φ is learned using
the training data. For instance, in case of neural network model, the model
parameters φ would be the weights of each layers of the network. On the test
instances, first the unknown parameters are estimated using the trained model
before solving the optimization problem.

In a standard ML setup, the quality of the predictions is measured by an
error-loss metric L. For a regression task, the error is measured by the mean
square error, whereas for classification task it is the cross-entropy loss. The
learning objective is to minimize the expected value of this error-loss metric.

Neural network ML models learn model parameters φ by batch gradient
descent (and its variants) [14]. In gradient descent (Algorithm 1), the model
parameters are updated iteratively by computing the gradients of L with respect
to the parameters.
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Algorithm 1: Batch gradient descent

Input : training data D ≡ {(χi, ci)}ni=1

1 Parameter: ω: Learning Rate
2 Initialize φ
3 repeat
4 sample batch (χ, c) ∼ D
5 predict ĉ = fφ(χ) ; Compute L and ∂

∂φ
L

6 φ← φ− ω ∗ ∂
∂φ

L
7 until convergence;

In this work, we consider constraint optmization problem, that can be trans-
formed into the following MILP form:

min
x

c>x

subject to Ax ≤ b;xi ∈ Z for all or some i and xi ≥ 0 ∀i
(1)

where x is the solution variable and c, A, b are the coefficients of the optimization
problem. We denote the optimal solution of Eq.(1) as x∗(c;A, b). Specifically, we
consider, the objective coefficient c is unknown and must be estimated from the
features χ using an ML model. In order to train the ML model, we assume,
training data {(χi, ci)}ni=1 are available.

Two-stage learning One can treat the prediction and the optimization tasks

independently. The ML model can be trained to minimize the E
[
L(fφ(χ), c)

]
without considering the optimization module. After training, on the test in-
stances, one can solve the MILP using the predicted coefficients. Such a two-
stage approach does not consider minimizing the regret, but minimizes the error
between actual and predictions.

This approach might be justified when the ML model generates accurate
or near-accurate predictions, but for most real life problems there are errors in
predictions. Interestingly, the impact of prediction errors on the optimization
problem is not uniform and a two-stage approach fails to take this into account.

2.1 End-to-end Training

In predict-and-optimize setup, the predictions are intermediary results. The ob-
jective of the learning is to deliver better performance in terms of the optimiza-
tion problem. Task-loss [3] is a loss function that evaluates the error after the
optimization problem using the predictions. For the MILP problem we consider,
an immediate choice for the task-loss is the regret, which is the difference in the
objective between using predicted ĉ instead of apriori unknown c i.e.

regret
(
ĉ, c;A, b

)
= c>(x∗(ĉ;A, b)− x∗(c;A, b)) (2)
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Algorithm 2: End-to-end training

Input : A, b; training data D ≡ {(χi, ci)}ni=1

1 Parameter: ω: Learning Rate
2 Initialize φ
3 repeat
4 sample batch (χ, c) ∼ D
5 predict ĉ = fφ(χ)
6 x∗ ← MILP Predict+Optimize:: Forward Pass // solution given

predictions

7
∂x∗

∂ĉ
← MILP Predict+Optimize:: Backward Pass

8
∂ regret
∂φ

= ∂ regret
∂x∗

∂x∗

∂ĉ
∂ĉ
∂φ

9 φ← φ− ω ∗ ∂ regret
∂φ

10 until convergence

An end-to-end training of the predict-and-optimize problem considers the prob-

lem minφE
[

regret
(
fφ(χ), c;A, b

)]
. The end-to-end training is much more chal-

lenging in this case as the MILP problem is solved for each training instance
repeatedly in each epoch. Clearly this makes the learning an expensive pro-
cess. Moreover, a bigger challenge lies in the nonconvex and discrete nature of
the MILP. An ML model would update its parameters in the backward pass,
by computing the gradient of the regret with respect to the model parameters
(Algorithm 2). Moreover, this gradient is decomposed by chain rule as follows:

∂ regret
(
fφ(χ), c;A, b

)
∂φ

=
∂ regret

(
fφ(χ), c;A, b

)
∂x∗(ĉ;A, b)

∂x∗(ĉ;A, b)

∂ĉ(φ)

∂ĉ(φ)

∂φ
(3)

From the definition of regret in Eq. (2), we recognize the first term is equal to
c. The third term is the gradient of the prediction ĉ with respect to the model
parameters φ and computed seamlessly by a deep learning architecture [11].
Notice, the second term is the gradient of the solution x∗(ĉ) with respect to the
coefficient ĉ i.e. it is a differentiation through the argmin operator. The problem
in argmin differentiation for the discrete MILP problem is argmin is a piece-wise
constant function of ĉ. Hence for every point in the solution space the gradient
is either 0 or undefined [4].

In the next section, we will propose a differentiable optimization layer which
executes the forward and the backward pass in line 6 and 7 of Algorithm 2.

3 Interior Point Approach

First, we overcome the discrete nature of the solution by considering the contin-
uous relaxation of the MILP, which renders it to a continuous LP as follows:

minx:Ax=b c
>x;x ≥ 0 (4)
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Algorithm 3: MILP Predict+Optimize

1 Hyperparameters: λ-cut-off, α: damping factor
2 Forward Pass (c, A, b)
3 x, y, t, τ, κ ← x0, y0, t0, τ0, κ0 // Initialization

4 repeat
5 Compute search-directions dx, dy, dτ by solving Eq 7
6 update x, y, t, τ, κ such that x, t, τ, κ ≥ 0

7 λ ← x>t+τ×κ
p+1

8 until λ < λ-cut-off
9 (x, y, t) ← (x, y, t)/τ

10 return x

11 Backward Pass ()

12 retrieve (x, y, t; c, A, b)

13 compute M = AT−1XA> to solve Eq (8)
14 M̄ = M + αI (Tikhonov damping)

15 return ∂x
∂c

by solving Eq (8) using M̄

As is well-known, such LP formulation is solvable in polynomial time. Interior
point method is one of the efficient tools for solving an LP problem. Let x∗ be
the optimal solution of Eq. (4); our goal is to compute ∂x∗/∂c.

3.1 Forward Pass

In the neural network architecture, the forward pass generates the solution of
the optimization problem to compute the regret. In essence, the forward pass
is responsible for finding the solution to the optimization problem. For this
purpose, we have to find an LP solution of Eq. (4) using interior point method.
State-of-the-art interior point methods solve Eq. (4) by forming the following
homogeneous self-dual (HSD) [18] formulation:

Ax− bτ = 0

A>y + t− cτ = 0

−c>x+ b>y − κ = 0

t = λX−1e

κ =
λ

τ
x, t, τ, κ ≥ 0

(5)

where λ = (x>t+ τ ×κ)/(p+ 1). The advantage of HSD formulation is it always
has a solution, with (x, τ) and (t, κ) being strictly complementary. Moreover,
κ/τ , in this case, is equal to the duality gap. So non-zero values of κ at the
solution is used to certify infeasibility [10].

The LP solving starts from an initial value (x0, y0, t0, τ0, κ0) of the variables
and then they are updated iteratively by respecting the constraints x, t, τ, κ ≥ 0
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[1]. This update is performed for a decreasing sequence of λ by solving the
following Newton equation system:

A 0 0 −b 0
0 A> I −c 0
−c> b> 0 0 −1
T 0 X 0 0
0 0 0 κ τ



dx
dy
dt
dτ
dκ

 =


r̂p
r̂d
r̂g
r̂xt
r̂τκ

 = −


η(Ax− bτ)

η(A>y + t− cτ)
η(−c>x+ b>y − κ)

Xt− γλe
τκ− γλ

 (6)

Here, (dx, dy, dt, dτ , dκ) are the updates of the corresponding variables (x, y, t, τ, κ).
Moreover, rewriting the last two inequalities as dt = X−1(r̂xt − Tdx) and
dκ = (r̂τκ − κdτ )/τ , we can write Eq. 6 in more compact form:−X−1T A> −c

A 0 −b
−c> b> κ/τ

dxdy
dτ

 =

r̂d −X−1r̂xtr̂p
r̂g + (r̂τκ/τ)

 (7)

Solution of Eq. (7) is well-documented in LP literature. Readers can refer to [1]
for details about the solution process.

3.2 Gradient Computation by homogeneous self-dual formulation

To compute the gradient ∂x/∂c for the backward pass, we propose to differentiate
the HSD formulation in Eq. (5). Differentiating Eq. (5) with respect to c and
making use of t = λX−1e, we write the following matrix equation:

−X−1T A> −c
A 0 −b
−c> b> κ/τ

∂x∂c∂y
∂c
∂τ
∂c

 =

τI0
x>

 (8)

We draw the attention of the readers to the similarity between Eq. (7) and
Eq. (8). Eq. (7) is solved for updating the variables in the forward pass, whereas
Eq. (8) is solved for computing the gradient in the backward pass. As Eq. (7)
and Eq. (8) differs only in right hand side, we solve both in the same way.

3.3 Implementation consideration

Early stopping While solving Eq. (7) or Eq. (8) we have to solve a matrix
equation of the form Mv = r, where M = AT−1XA>. To obtain a solution M
should be a Positive Definite (PD) matrix.

As mentioned in section 3.1, at the optimal (x, τ) and (t, κ) are strictly
complementary, which implies λ = (x>t+τ×κ)/(p+1) should be 0. This suggests
as we approach the optimal point, λ becomes close to zero. So effectively at the
optimal point λ → 0 =⇒ X−1T = λX−2 → 0. In such situation we cannot
solve Eq. (8) because of M not being a PD matrix.

In order to circumvent this, we propose to stop the forward pass solver as
soon as λ becomes smaller than a given λ-cut-off; that is before λ becomes too
small for a numerical stable solution.
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Tikhonov damping Even after this fix, we found M not to be PD for some
instances. To overcome this, we replace M by its Tikhonov damped [8] form M̄
:= M + αI; α > 0 being the damping factor. We use an α value of 10−3.

4 Experimental Results

In this section we evaluate our proposed approach versus the state of the art.

Experimental Setup The optimization problem is a resource-constrained day-
ahead job scheduling problem to minimize total energy cost (see [15]). Tasks must
be assigned to a given number of machines, where each task has a duration, an
earliest start, a latest end, resource requirement and a power usage, and each
machine has a resource capacity constraint. Also, tasks cannot be interrupted
once started, nor migrated to another machine and must be completed before
midnight. Time is discretized in 48 timeslots. As day-ahead energy prices are
not known, they must be predicted for each timeslot first using an ML model.
The energy price data is taken from the Irish Single Electricity Market Operator
(SEMO) [7]. It consists of historical energy price data at 30-minute intervals
from 2011-2013. Out of the available 789 days, 552 (70%) are used for training,
60 (8%) for validation and 177 (22%) for testing. Each timeslot instance has
calendar attributes; day-ahead estimates of weather characteristics; SEMO day-
ahead forecasted energy-load, wind-energy production and prices; and actual
wind-speed, temperature, CO2 intensity and price. Of the actual attributes, we
keep only the actual price, and use it as a target for prediction.

Two-stage QPTL SPO
HSD

Interior Point

MSE-loss
740
(8)

5106
(37)

4094
(318)

3370
(360)

Regret
16290
(1310)

15398
(2725)

13081
(105)

12945
(1442)

Table 1. Comparison among approaches for the Energy Scheduling problems
Average and standard deviation of MSE-loss and regret on test data

For prediction, we use a feedforward linear neural network. The learning
rate, epochs and weight decay are considered as hyperparameters and they are
selected by grid search on the validation set. A damping factor value of 0.001
was used for resolving the numerical warnings due to matrix not being PD. The
neural network and the MILP model have been implemented using PyTorch
1.5.0 [12] and Gurobipy 9.0 [6], respectively. As mentioned before, we use con-
tinuous relaxation of the MILP to train the neural network model. But we are
going report the discrete regret on test dataset. We evaluate the regret based on
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discrete problem because we train the ML model to do well with respect to the
discrete MILP problem.

We compare the HSD-interior point method with a two-stage approach, the
QPTL (quadratic programming task loss) [17] approach and the SPO approach
[5] in Table 1, where we report the average and standard deviation (in the
brackets) of 10 runs of the prediction-losses and the regrets of each approach.
It reveals that our proposed HSD-interior point approach performs marginally
better than state-of-the-art approaches.

5 Conclusion and Future Directions

We presented a novel framework for end-to-end training of predict-and-optimize
class of problems. Specifically we derived an algorithmic formulation, based on an
interior point method to differentiate an LP problem, which is deployable in end-
to-end neural network architectures. In so doing, we opened up a methodology
to which neural networks can be applied without adding an artificial quadratic
term. We empirically demonstrate that our proposed approach can outperform
the standard two-stage approach as well as the state of the art.

End-to-end neural network models using gradient-based techniques have be-
come popular choice for solving many real-life applications. We believe our pro-
posed approach provides an exciting step towards integrating combinatorial op-
timization and neural network. We hope this work might hold interest for CP
research community as such problems are increasingly being dealt in this com-
munity.

Our future work will possibly explore the ideas for improving the equation
system solving, as well as for caching and reusing results across the epochs,
paving the way for a time-efficient deployment. Another important direction for
future work includes considering the effect of continuous relaxation instead of
the original discrete combinatorial problem and investigating other continuous
surrogate of the discrete problem.
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