1. INTRODUCTION

The digital mixer is realizable but has spurs. Careful filtering is needed.

\[f_1 \rightarrow [f_1-f_2]+s \rightarrow [f_1-f_2]+s \]

Digital mixer:
- Use digital circuits (digital gates)
- Digital signals

2. MIXER DESIGN

- Analogue mixer can be expressed
 - Replace analogue signal by digital
 - Multiplication is XOR
 - Implement addition
 - Implement phase shift - (using Dflip

Addition

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A+B</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>+2</td>
<td></td>
</tr>
</tbody>
</table>

- A and B are two level signal while A+B are three level signal.
- The first line is low level and is neither A NOR B, while the last one is high level and can be implemented as AND.
- The output of the first line and last line will be input of RS trigger.

3. SIMULATION

Figure 1: Functional diagram of the proposed mixer

Figure 2. Digital mixer with digital logic

4. IMPLEMENTATION AND MEASUREMENT

D flip flop CD74HC74E, NOT gate CD74HC04E, XOR gate CD74HC86E, NOR gate CD74HC02E, AND gate CD74HC08E, PLL chip CD74HC4046AE

CONCLUSION

The digital mixer is realizable but has spurs. Careful filtering is needed.

REFERENCES