Design and Implementation of a Digital Mixer with Digital Logic
Niyonkuru, Leonidas; Vandersteen, Gerd; Van Biesen, Leo

Publication date: 2019

Citation for published version (APA):
1. INTRODUCTION

Digital mixer:
- Use digital circuits (digital gates)
- Digital signals

1. Functional diagram of the proposed mixer

2. MIXER DESIGN

- Analogic mixer can be expressed
- Replace analogic signal by digital
- Multiplication is XOR
- Implement addition
- Implement phase shift - (using Dflip)

Addition

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A+B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

- A and B are two level signal while A+B are three level signal.
- The first line is low level and is neither A NOR B, while the last one is high level and can be implemented as AND
- The output of the first line and last line will be input of RS trigger

3. SIMULATION

4. IMPLEMENTATION AND MEASUREMENT

D flip flop CD74HC74E, NOT gate CD74HC04E, XOR gate CD74HC86E, NOR gate CD74HC02E, AND gate CD74HC08E, PLL chip CD74HC4046AE

REFERENCES