A PDGFR-based score predicts significant liver fibrosis in patients with chronic alcohol abuse, NAFLD and viral liver disease

Lambrecht, Joeri; Verhulst, Stefaan; Mannaerts, Inge; Sowa, Jan-Peter; Best, Jan; Canbay, Ali; Reynaert, Hendrik; van Grunsven, Leo A

Published in:
EBioMedicine

DOI:
10.1016/j.ebiom.2019.04.036

Publication date:
2019

Document Version:
Final published version

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Research paper

A PDGFRβ-based score predicts significant liver fibrosis in patients with chronic alcohol abuse, NAFLD and viral liver disease

Joeri Lambrecht a, Stefaan Verhulst a, Inge Mannaeerts a, Jan-Peter Sowa c, Jan Best c, Ali Canbay c, Hendrik Reynaert a,b, Leo A. van Grunsven a,*

a Department of Basic (Bio-)medical Sciences, Liver Cell Biology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
b Department of Gastroenterology and Hepatology, University Hospital Brussels (UZBrussels), Brussels, Belgium
c Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany

ARTICLE INFO

Article history:
Received 28 February 2019
Received in revised form 18 April 2019
Accepted 18 April 2019
Available online 27 April 2019

Keywords:
Platelet derived growth factor receptor
Biomarker
Extracellular vesicle
Diagnosis
Hepatic stellate cell

Abstract

Background: Platelet Derived Growth Factor Receptor beta (PDGFRβ) has been associated to hepatic stellate cell activation and has been the target of multiple therapeutic studies. However, little is known concerning its use as a diagnostic agent.

Methods: Circulating PDGFRβ levels were analysed in a cohort of patients with liver fibrosis/cirrhosis due to chronic alcohol abuse, viral hepatitis, or non-alcoholic fatty liver disease (NAFLD). The diagnostic performance of PDGFRβ as individual blood parameter, or in combination with other metabolic factors was evaluated.

Findings: sPDGFRβ levels are progressively increased with increasing fibrosis stage and the largest difference was observed in patients with significant fibrosis, compared to no or mild fibrosis. The accuracy of sPDGFRβ-levels predicting fibrosis could be increased by combining it with albumin levels and platelet counts into a novel diagnostic algorithm, the PRTA-score, generating a predictive value superior to Fib-4, APRI, and AST/ALT. The sPDGFRβ levels and the PRTA-score are independent of liver disease aetiology, thus overcoming one of the major weaknesses of current non-invasive clinical and experimental scores. Finally, we confirmed the diagnostic value of sPDGFRβ levels and the PRTA-score in an independent patient cohort with NAFLD which was staged for fibrosis by liver biopsy.

Interpretation: The PRTA-score is an accurate tool for detecting significant liver fibrosis in a broad range of liver disease aetiologies.

Fund: Vrije Universiteit Brussel, the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Flanders) (HILIM-3D; SBO140045), and the Fund of Scientific Research Flanders (FWO).

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The chronic presence of liver-injury causing agents, including alcohol, Hepatitis B or C virus (HBV/HCV) infection, and non-alcoholic steatohepatitis/fatty liver disease (NASH/NAFLD), leads to the activation of hepatic stellate cells (HSCs) toward a myofibroblastic phenotype [1]. This activation process is characterized by an excessive deposition of extracellular matrix, scar tissue formation, and an enhanced responsiveness of the HSCs toward various stimulating factors secreted by their microenvironment [2]. Such enhanced responsiveness is facilitated by an elevated expression of cell membrane receptors such as several tyrosine kinases receptors [2]. One such receptor is the platelet derived growth factor receptor (PDGFR), of which 2 variants can be found: PDGFR-alpha (PDGFRα) which is constitutively expressed by HSCs, and PDGFR-beta (PDGFRβ) whose expression increases during HSC activation [3]. Binding of the PDGF isomers to their respective receptors induces receptor dimerization, phosphorylation of tyrosine residues at

https://doi.org/10.1016/j.ebiom.2019.04.036
2352-3964/© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Algorithm

Recent clinical studies have shown that fiber progression is difficult in the presence of a non-invasive marker. In this study, we evaluated the role of serological markers and imaging modalities for staging of liver fibrosis. The most sensitive and specific parameter was the FibroScan

In the current clinical setting, several serological parameters, or a group of parameters combined into a diagnostic algorithm, are used to assess liver fibrosis. The use of serum markers may rely on the detection of a single parameter, or a group of parameters combined into a diagnostic algorithm. In the current clinical setting, several serological algorithms have gained popularity, such as the fibrosis 4 (Fib-4) score [12], enhanced liver fibrosis (ELF) test [13], aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio [14], and the AST to platelet ratio index (APRI) [15]. However, although the implementation of serological markers and imaging modalities has led to less liver biopsies, it has not yet resulted into its full redundancy. Avoidance of liver biopsy for staging of fibrosis will only be possible when a non-invasive marker has been found which is independent of liver disease aetiology, easily accessible, with low cost, and with high specificity and sensitivity for both early and late stages of liver fibrosis [16]. Especially the limited accuracy for diagnosis and progression of early stage liver fibrosis remains a weakness of current non-invasive diagnostic tools, which thus prevents an as early as possible therapeutic intervention (or life style change) to avoid fibrosis progression. As fibrosis has been shown to be the most important predictor of liver-related mortality [17], early intervention would significantly reduce mortality.

In this study, we present an analysis of circulating PDGFRβ protein levels in a patient population with different aetiologies of liver fibrosis, being chronic alcohol abuse, chronic viral (HBV/HCV) infection and NAFLD. Additionally, we propose the implementation of soluble PDGFRβ levels into a novel diagnostic algorithm, the sPDGFRβ-thrombocyte albumin (PTA)-score, which yields a high discriminative capacity for diagnosis of significant fibrosis.

2. Materials and methods

2.1. Animal studies

The use and care of animals was reviewed and approved by the Ethical Committee of Animal Experimentation of the Vrije Universiteit Brussel (VUB, Belgium) in project 16-212-2, and was carried out in accordance to European Guidelines for the Care and Use of Laboratory Animals. Mice were housed in a controlled environment with free access to chow and water. Quiescent hepatic stellate cells were isolated from male Balb/c mice (Charles River Laboratories, L’Arbresle, France) (25–30 weeks old) as described earlier [18]. Briefly, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza) supplemented with 10% exosome-depleted foetal bovine serum (System Biosciences, Mountain View, USA). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19]. Brie(y, murine livers were perfused with enzymatic solutions, followed by low-speed centrifugation steps to remove hepatocytes. Hepatic stellate cells were purified from the non-parenchymal fraction based on their buoyancy, using an 8% Nycodenz solution. Isolated HSCs were cultured on regular tissue culture dishes (Greiner Bio-One, Vilvoorde, Belgium), in Dulbecco’s modified Eagle’s medium (Lonza). Cells were incubated with anti-F4/80-APC (MF8021, Thermo Scientific, USA) and anti-flC protein expression, as described earlier [19].
clearly associated with cellular debris by centrifugation at 300 g for 5 min (4 °C) and 2500 g for 20 min (4 °C). Large vesicle-like contaminants were depleted by centrifugation at 10,000×g for 30 min. The supernatant was further centrifuged at 100,000×g for 2 h (4 °C) to pellet EVs, which were then washed once by resuspension in phosphate-buffered saline (PBS) followed by a final ultracentrifugation step at 100,000×g for 2 h (4 °C). The final EV pellet was resuspended in a small volume of PBS and characterized by use of the ZetaView® PMX110 (Particle Metrix, Meerbusch, Germany) which is equipped with nanoparticle tracking analysis (NTA) software, for particle size, zeta-potential, and concentration. The instrument was calibrated using 100 nm sized polystyrene particles and handled following manufacturer’s protocol. NTA measurements were executed at 11 different positions at a constant temperature of 23 °C.

2.3. Initial patient cohort

Patients were recruited from the Department of Gastroenterology of the University Hospital of Brussels (UZ Brussel), Belgium. The study protocol was approved by the local ethical committee of the UZ Brussel and Vrije Universiteit Brussel (reference number 2015/297; B.U.N. 143201525482) and was in accordance with the Declaration of Helsinki. Patients with alcohol abuse, chronic viral hepatitis and NAFLD were recruited. A healthy population that had no evidence of liver disease was recruited as control group. All participants signed an informed consent prior to inclusion to the study. Inclusion criteria for fibrosis and cirrhosis patients included: i) diagnosis confirmed by elastography; ii) availability of complete clinical information. Exclusion criteria were: i) HIV co-infection; ii) missing data on important variables; iii) idiopathic/unknown origin of liver disease. Diagnosis of liver fibrosis and cirrhosis was based on physical examination, blood tests, and elastography techniques. Patients with viral or alcoholic liver disease underwent transient elastography (FibroScan®, Echosens, France). Patients with at least 10 valid liver stiffness measurements with a success rate of at least 60% were included in the final analysis. Cut-off values used to discriminate fibrotic stages equal or more than F2, F3 or F4, were respectively 7.2 kPa, 9.5 kPa and 12.5 kPa [20]. Acoustic radiation force impulse (ARFI) was applied to determine the stage of liver fibrosis in those patients with NAFLD. Cut-off values of 1.25 m/s, 1.54 m/s and 1.84 m/s were used to identify a fibrotic stage equal to, or more than F2, F3, and F4 respectively.

2.4. Blood collection

Blood samples were collected by venepuncture into evacuated EDTA-KE S-Monovette tubes (Sarstedt AG & Co, Nümbrecht, Germany) on the day of liver biopsy or elastography. Blood specimens were included in the study. Inclusion criteria for general patients were executed at 11 different positions at a constant temperature of 23 °C.

2.5. Serological tests

Validation of the suggested fibrosis scoring was obtained by haematological analysis and diagnostic algorithms such as the NAFLD fibrosis score, Fib-4, APRI, and AST/ALT ratio. Fib-4 and APRI were calculated using following formulae:

\[
Fib-4 = \frac{age \times AST [IU/L]}{platelet count [10^9/L] \times (ALT [IU/L])^{1/2}}
\]

\[
APRI = \frac{AST [IU/L]/ULN}{platelet count [10^9/L]}
\]

2.6. Human liver tissue

Human liver tissue (Supplementary Table 1) was obtained from surgical procedures performed at the Department of Thoracic and Transplantation Surgery and Surgical Oncology of the University Hospital of Brussels (UZ Brussel), Belgium. Ethical approval was obtained from the local ethical committee of the UZ Brussel (Reference number 2015/278; B.U.N. 143201525406) and was in accordance with the Declaration of Helsinki. All participants signed an informed consent prior to inclusion to the study.

2.7. Validation patient cohort

For validation, 57 NAFLD-patients were recruited from a cohort initially recruited at the Alfried-Krupp-Krankenhaus Essen, Department for General and Visceral Surgery, Germany. The study protocol was approved by the institutional review board of the University Hospital Essen (Ethik-Kommission der Medizinischen Fakultät der Universität Duisburg-Essen; Germany; reference number 15-6356-BO) and was in accordance with the Declaration of Helsinki. All procedures adhered to the Declaration of Helsinki and the requirements of the IRB. Due to the retrospective nature of the validation study the IRB waived the need for written informed consent.

Patients of this cohort received bariatric surgery for weight reduction due to morbid obesity. Patients were eligible for the validation study, when liver histology, including fibrosis scoring, and a sufficient amount of serum was available. Patients received dietary and exercise counselling for 6 months prior surgery, without calorie restriction. A blood sample was collected for assessment of serum derived factors on the day of surgery (prior surgery) and liver tissue was sampled during bariatric surgery as a wedge biopsy. All data shown were recorded on the day of surgery.

Histological assessment of the liver tissue (steatosis, ballooning, lobular inflammation and fibrosis) was performed by two expert pathologists on HE- and Masson's Trichrome stained 4 µm slides for each sample according to Kleiner et al. [21] and Desmet et al. [22].

2.8. Human hepatic stellate cells

Primary human HSCs were purchased from ScienCell (San Diego, USA), and used before passage 8 was reached. The LX-2 cell line, an immortalized human HSC line, was kindly provided by Dr. Scott L. Friedman (Mount Sinai School of Medicine, New York, USA). Human HSCs were cultured in Dulbecco's modified Eagle's medium (Lonza) supplemented with 10% exosome-depleted foetal bovine serum (System Bio-Sciences), 2 mM l-glutamine (Ultraglutamine 1®) (Lonza), 100 U/ml penicillin and 100 µg/ml streptomycin (Pen-Strep®) (Lonza).

2.9. Enzyme-linked immunosorbent assays (ELISA)

Human soluble PDGF-Rβ was measured with a commercially available ELISA kit (ThermoFisher scientific), according to manufacturer’s instructions. All plasma samples were diluted 1/10 with diluent provided by the manufacturer. Absorbance values were obtained with an iMark™ microplate absorbance reader (Bio-rad).

2.10. Statistical analysis

Data was analysed using GraphPad Prism 6 (GraphPad, Palo Alto, USA) statistical software. Quantitative variables are expressed as means ± standard deviation (SD) or expressed as box-plots (min to max). Statistical analyses were performed using the Student’s t-test, Mann-Whitney test, and Kruskal-Wallis test with Dunn’s post hoc test, as appropriate. Categorical variables were analysed using the Chi-square test. The baseline characteristics of the three patient cohorts were compared using the Chi-square test or Kruskal-Wallis test. To
To determine the diagnostic accuracy and performance, receiver operating characteristic (ROC) curves were constructed, and the area under the curve (AUC) was calculated. In order to identify ideal cut-off values, the Youden's index was calculated [23], and the sensitivity and specificity were computed. Correlation studies were executed using the Spearman's correlation test. The sufficiency of the sample size was confirmed by MedCalc version 18 (MedCalc Software, Ostend, Belgium) using in house preliminary results and a type I error rate (α) of 5% and a power (1-β) of 80%. Differences of obtained results were considered significant at p < 0.05.

3. Results

3.1. Human and murine aHSC-derived EVs are positive for PDGFRβ

We previously reported on the enhanced expression of PDGFRβ on extracellular vesicles (EVs) extracted from the plasma of chronic Hepatitis B or C virus (HBV/HCV)-infected patients with early (F ≥ 2) liver fibrosis [18]. This led us to speculate that these circulating EVs could represent the presence of activated HSCs in the injured liver. To investigate this hypothesis, we first verified the possible HSC-derivated origin of these PDGFRβ-positive EVs. Vesicles extracted by ultracentrifugation from the culture medium of primary mouse- and human HSCs show an average size of 130 nm (Fig. 1a), which corresponds to the characteristic size of small vesicles [24]. Protein analysis further characterized these EVs through their positivity for the EV-marker Heat Shock Protein 70 (HSP70) and absence of the cellular marker calreticulin (Fig. 1b and c), indicative of pure EVs. Comparison of EVs extracted from media collected from activated primary mouse HSC cultures (culture day 8–10) to more quiescent HSC cultures (day 0–2), shows an enrichment in PDGFRβ (Fig. 1b). In line, a strong PDGFRβ-positivity can be seen in EVs derived from activated primary human HSCs (Fig. 1c). In contrast, the HSC cell line LX2 does not show an enrichment of PDGFRβ in their EVs (Fig. 1c).

To evaluate whether in human livers PDGFRβ expression is also correlated with the activated phenotype of HSCs, we evaluated liver tissue obtained from cirrhotic HCC patients. Picrosirius staining shows the excessive collagen deposition, and thus the fibrotic/cirrhotic character of liver tissue obtained from these HCC patients. Collagen deposition was absent or limited in healthy liver tissue obtained from patients undergoing resection of colorectal metastases (Fig. 1d, e). Together with the significant deposition of collagen in the fibrotic/cirrhotic tissue, we show a significant higher expression of PDGFRβ (Fig. 1d, e), confirming previous reports [25,26].

3.2. PDGFRβ is up-regulated in the murine CCl4-injury model

We next analysed the expression of PDGFRβ in a well-established murine model of liver fibrosis, being repeated injections of carbon tetrachloride (CCl4), in which chronic necro-inflammatory damage leads to a significant activation of HSCs [27]. Protein analysis of the livers of 4-week CCl4-treated mice shows a significant up-regulation of PDGFRβ, both by western blot (Fig. 2a) and on staining (Fig. 2b), as compared to their healthy controls. RNA expression analysis shows a dominant expression of PDGFRβ in HSCs when compared to the non-parenchymal fraction (NPF), and to freshly isolated individual liver cell types being hepatocytes, liver sinusoidal endothelial cells, and Kupffer cells (Fig. 2c). This HSC-association of PDGFRβ is further illustrated by the correlation and overlap (Spearman’s correlation coefficient (r) = 0.7838) in protein expression of PDGFRβ and alpha smooth muscle actin (α-SMA), a marker for activated HSCs, in livers of CCl4-treated mice (Fig. 2d).

3.3. Clinical characteristics of the initial study population

Due to the several drawbacks of vesicle research such as the time-consuming and low-throughput character of current EV isolation techniques, the clinical setting is currently not ready to use EVs, nor their protein content, as biomarkers for the diagnosis of disease onset or its progression [8]. We therefore investigated the possibility to use total circulating PDGFRβ content as biomarker for liver fibrosis progression. To this end, the plasma PDGFRβ-content of a cohort of 148 patients and 14 healthy volunteers was analysed. Patients with various aetiologies of liver disease were included, being chronic alcoholic liver damage (n = 35), chronic HBV/HCV infection (n = 46), and NAFLD (n = 67) (Table 1). As expected, a significantly higher Body Mass Index (BMI) value is observed in patients with NAFLD.

Patients with alcoholic or viral liver disease underwent transient elastography measurements by FibroScan® to determine the stage of fibrosis/cirrhosis. Patients with NAFLD all suffered from Diabetes Mellitus type 2 and underwent ARFI to evaluate the degree of liver fibrosis/cirrhosis. In the total patient cohort, stage of liver fibrosis was distributed as follows: F0–1, n = 51 (34.46%); F2, n = 29 (19.59%); F3, n = 28 (18.92%); and F4, n = 40 (27.03%). Various fibrosis scoring algorithms, including the aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, AST to platelet ratio index (APRI), and Fibrosis-4 (Fib-4) index, were calculated to further validate the early or late disease-character of the included patients (Supplementary Table 2).

3.4. sPDGFRβ predicts the presence of significant (F ≥ 2) fibrosis

Analysis of soluble PDGFRβ (sPDGFRβ) levels in our total patient cohort by ELISA identified an overall increase of sPDGFRβ according to the stage of liver fibrosis (Fig. 3a). Creating various sub-populations based on staging of fibrosis identified a significant discriminative value of sPDGFRβ levels to distinguish patients with significant fibrosis (F ≥ 2) from those with no or minimal fibrosis (F0–1); (median [25th: 75th percentile]) 9317 [6625;12,333] pg/mL vs 5581 [3838;10,069] pg/mL, respectively, p < 0.0001. Use of sPDGFRβ to predict the presence of significant fibrosis (F ≥ 2) was assessed by construction of AUROC, and generated an AUC of 0.7303 (95% confidence interval (CI): 0.6395–0.8211) (Table 2), which is considerably higher than the AUCs obtained from clinical scores such as Fib-4, APRI and AST/ALT, respectively 0.6635 (95% CI: 0.5690–0.7581), 0.6309 (95% CI: 0.5331–0.7286), and 0.5976 (95% CI, 0.4952–0.7001) (Table 2).

When the cut-off for parting of the patient population is taken at advanced fibrosis (F ≥ 3) or cirrhosis (F = 4), significant differences with lower fibrosis stages can still be seen, respectively p = 0.0079 and p = 0.0273 (Fig. 3a). However, the predictive character of sPDGFRβ strongly decreases (F ≥ 3: 0.6446 (95% CI: 0.5565–0.7327); F = 4: 0.6409 (95% CI: 0.5457–0.7360)) (Table 2) and is lower than the calculated established clinical scores (Table 2).

3.5. Predictive function of sPDGFRβ is independent of disease aetiology

Division of the patient cohort based on disease aetiology identified the strongest discriminative function of sPDGFRβ for significant liver fibrosis (F ≥ 2) in patients with alcoholic liver disease; 0.8634 (95% CI:...
Fig. 2. PDGFRβ expression in a CCl₄-induced mouse model of liver fibrosis. PDGFRβ expression in total liver tissue of CCl₄-injected mice, both on (a) WB and (b) immune histochemical staining. (a) PDGFRβ and αSMA protein levels were quantified and normalized versus GAPDH expression (n = 5) (whole western blot membrane for PDGFRβ is shown in Supplementary Fig. 1). Bars indicate the fold increase in CCl₄-treated mice compared to healthy controls. (b) Representative images of PDGFRβ-staining on liver tissue of healthy and CCl₄-induced mice are shown. Black bars represent 500 μm. The area of PDGFRβ positive staining was calculated by using image analysis software and is plotted as percentage of the total area (n = 5). (c) PDGFRβ mRNA expression in the non-parenchymal fraction (NPF) and different liver cell types, being quiescent HSCs, Kupffer cells (KC), liver sinusoidal endothelial cells (LSEC), and hepatocytes. Significant differences were calculated as compared to PDGFRβ mRNA expression in HSCs. Error bars represent mean values ± SD. (d) PDGFRβ expression by activated HSCs shown by co-staining of PDGFRβ and the activation marker αSMA in liver tissue of healthy or CCl₄-injured mice. Representative images are shown (n = 3). Grey bars represent 100 μm.
0.6386 - 1.043) (Supplementary Table 3). The AUC in patients with viral liver disease was 0.7253 (95% CI: 0.5732 - 0.8774) and in NAFLD 0.6406 (95% CI: 0.4825 - 0.7986). The predictive function of sPDGFRβ for significant liver fibrosis (F ≥ 2) is higher for all three disease aetiologies, separately, than the predictive accuracy of Fib-4, APRI or ALT/AST (Supplementary Table 4), indicating the aetiology-independence of the results obtained from analysis of the total population. Additionally, we did not find any association between sPDGFRβ levels and clinical features such as sex (p = 0.2863), age (r = 0.1578; p = 0.0562) (data not shown), and BMI (r = 0.1132; p = 0.1863) (Fig. 3b). Only a few parameters had significant correlation to sPDGFRβ, being ALT (r = 0.1724; p = 0.0440), alkaline phosphatase (r = 0.1969; p = 0.0226), total bilirubin (r = 0.2990; p = 0.0005), and albumin (r = -0.1820; p = 0.0414) (Fig. 3b). Their low correlation coefficient, and the fact that only a limited number of parameters correlate with sPDGFRβ, is explained by the hepatocyte-nature of most tested metabolic and biochemical parameters. This further underlines the HSC-origin of sPDGFRβ and its progressive increasing character in liver fibrosis.

3.6. Integration of sPDGFRβ into a novel diagnostic algorithm: the PRTA-score

To improve the diagnostic accuracy of sPDGFRβ, we generated an algorithm containing three factors that are all correlated with fibrosis progression (Fig. 3c): sPDGFRβ (r = 0.3406; p < 0.0001), albumin (r = -0.2541; p = 0.00391), and thrombocyte levels (r = -0.3343; p < 0.0001). When sPDGFRβ is combined with each individual factor, an increase in AUC can be seen for the prediction of significant fibrosis (sPDGFRβ/albumin: 0.7431; sPDGFRβ/thrombocytes: 0.7672), advanced fibrosis (sPDGFRβ/albumin: 0.6702; sPDGFRβ/thrombocytes: 0.7360), and cirrhosis (sPDGFRβ/albumin: 0.6938; sPDGFRβ/thrombocytes: 0.7701) (Table 3).

We combined these three factors into the sPDGFRβ thrombocyte albumin (PTRA)-score, using the following ratios:

\[
\text{PTRA-score} = \frac{(\text{sPDGFRβ})}{\left(\frac{\text{pg/mL}}{\text{albumin}}\right)} \times 100
\]

The PTRA-score can predict better significant fibrosis (0.7849 (95% CI: 0.6995 - 0.8702) and advanced fibrosis (0.7470 (95% CI: 0.6586 - 0.8355), higher (Table 3) than Fib-4, APRI, and ALT/AST (Table 2). However, the predictive value for cirrhosis (0.7995 (95% CI: 0.7122 - 0.8868) remains lower than the AUC obtained by using the Fib-4 score: 0.8344 (95% CI: 0.7623 - 0.9605). The PTRA-score is independent of sex, as no significant differences (p = 0.9185) are observed between male (9.293 [5.538; 15.50]) and female (9.110 [7.280; 11.84]) patients. Additionally, no correlation has been found between BMI of the patients and outcome of the PTRA-score (r = 0.1064; p = 0.2558) (data not shown).

3.7. The PTRA-score is highly predictive for significant fibrosis independent of liver disease aetiology

We next compared the diagnostic accuracy of sPDGFRβ alone, with the PTRA-score, and with the most important, and most used, clinical score: Fib-4 scoring (Fig. 4). The prediction of significant fibrosis increased from 0.7303 (95% CI: 0.6395 - 0.8211) using sPDGFRβ alone (Table 2) to 0.7849 (95% CI: 0.6995 - 0.8702) using the PTRA-score (Table 3). With this cohort, this AUC is significantly higher than the AUC provided by the Fib-4 score: 0.6635 (95% CI: 0.5690 - 0.7581) (Table 2). Additionally, for prediction of significant fibrosis, using a cut-off value of 7.804, the PTRA-score had good sensitivity and specificity values, respectively 77.11% and 73.17% (Table 3). When the patient population is divided based on aetiology of liver disease, a comparable significant predictive function for significant liver fibrosis is seen (Supplementary Table 5) for viral liver disease: 0.7905 (95% CI: 0.6386 - 0.9423); NAFLD: 0.6809 (95% CI: 0.5249 - 0.8369); and alcoholic liver disease: 0.8641 (95% CI: 0.7301 - 1.025), which are all higher than the AUC values obtained by the clinical algorithms (Supplementary Table 4). Together these data suggest that the PTRA-score is superior to Fib-4, APRI, and ALT/AST for the diagnosis of significant liver fibrosis, independent of liver disease aetiology.

3.8. Validation of the PTRA-score in an independent patient cohort

We next validated the PTRA-score in an independent patient cohort of 57 patients (Supplementary Table 6), with NAFLD, with histological assessment of fibrosis stage. Analysis of this cohort further validated the high predictive value of the PTRA-score (0.7284 (95% CI: 0.6368 - 0.8943); NAFLD: 0.6809 (95% CI: 0.5249 - 0.8369); and alcoholic liver disease: 0.8641 (95% CI: 0.7301 - 1.025), which are all higher than those obtained by applying sPDGFRβ-les levels 0.6702 (95% CI: 0.5192 - 0.8215) the Fib-4 score (0.6537 (95% CI: 0.4907 - 0.8168)) or NAFLD fibrosis score (0.6056 (95% CI: 0.4373 - 0.7737)) (Fig. 5a). Its important diagnostic value was further shown with its significant change (p = 0.00059) between patients with significant fibrosis (F ≥ 2) and those with no or mild fibrosis (F0 – 1) (Fig. 5b). The use of liver biopsy as reference method, allowed us to group patients with early stage liver fibrosis (F ≤ 2) into 2 populations: stage F1 and stage F2, to truly verify the accuracy of sPDGFRβ and the PTRA-score to distinguish between the early stages of liver fibrosis. While sPDGFRβ-les were up-regulated in a non-significant manner, the PTRA-score was significantly (p = 0.0386) higher in the patient cohort with stage F2 liver fibrosis, compared to those with

Table 1

<table>
<thead>
<tr>
<th>Patient disease aetiology</th>
<th>Alcoholic</th>
<th>Viral</th>
<th>NAFLD</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median (IQR)</td>
<td>60 (53–63)</td>
<td>53 (41–64)</td>
<td>55 (52–64)</td>
<td>0.1008</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>26 (74.29%)</td>
<td>27 (58.69%)</td>
<td>42 (62.69%)</td>
<td>0.3292</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.23</td>
<td>24.30</td>
<td>32.68</td>
<td><0.0001</td>
</tr>
<tr>
<td>Total bilirubin, median (IQR)</td>
<td>(23.11–30.57)</td>
<td>(22.36–28.12)</td>
<td>(28.00–35.06)</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory parameters: median (IQR)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Median (IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (IU/L)</td>
<td>11.65 (7.15)</td>
</tr>
<tr>
<td>ALP (IU/L)</td>
<td>132 (89–194)</td>
</tr>
<tr>
<td>GGT (IU/L)</td>
<td>229 (81–951)</td>
</tr>
<tr>
<td>Total bilirubin</td>
<td>1.17</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>0.81</td>
</tr>
<tr>
<td>Thrombocytes (10^3/µL)</td>
<td>118–214</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>39 (31–42)</td>
</tr>
<tr>
<td>Fibroscan (kPa)</td>
<td>0.74</td>
</tr>
<tr>
<td>Fib-4</td>
<td>0.7701</td>
</tr>
<tr>
<td>APRI</td>
<td>0.7844</td>
</tr>
<tr>
<td>AST/ALT-ratio</td>
<td>0.7284</td>
</tr>
<tr>
<td>Fibrosis scoring</td>
<td>0.7284</td>
</tr>
<tr>
<td>ALP/albumin</td>
<td>0.6938</td>
</tr>
<tr>
<td>Glutamyl transferase</td>
<td>0.7431</td>
</tr>
</tbody>
</table>

n: number; IQR: Interquartile range; BMI: Body Mass Index; AST: aspartate aminotransferase; ALT: alanine aminotransferase; ALP: Alkaline phosphatase; GGT: gamma-glutamyl transferase; Fib-4: Fibrosis-4; AST/ALT-ratio: aspartate aminotransferase/alanine aminotransferase ratio; APRI: AST to platelet ratio index; ARFI: acoustic radiation force impulse; NAFLD: non-alcoholic fatty liver disease.
stage F1 liver fibrosis (Fig. 5c). Noteworthy, considering the high BMI values of these NAFLD-patients, we did not find any correlation between PRTA-levels and BMI-scores ($r = 0.1282; p = 0.3601$) (data not shown).

4. Discussion

Fibrosis progression is accompanied by increased PDGFRβ-expression in activated HSCs [3]. We confirmed that PDGFRβ-expression is significantly dysregulated in human (Fig. 1d) and murine (Fig. 2a,b) subjects with liver fibrosis, and that HSCs are truly its most important source in the affected liver (Fig. 2c,d). We further investigated its diagnostic ability to detect significant fibrosis ($F \geq 2$), advanced fibrosis ($F \geq 3$), and cirrhosis ($F = 4$), in a patient population with different causes of liver disease. Circulating sPDGFRβ-levels were found to be highly elevated in patients with significant liver fibrosis (Fig. 3a), independently of the aetiology of the liver disease. We increased its diagnostic accuracy by combining it with albumin levels and thrombocyte

Table 2

Accuracy of sPDGFRβ and the clinical scores Fib-4, APRI, and AST/ALT-ratio for the detection of significant fibrosis ($F \geq 2$), advanced fibrosis ($F \geq 3$), and cirrhosis ($F = 4$), in the total patient cohort.

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>95% CI</th>
<th>p-value</th>
<th>Optimal Cut-off</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
<th>Youden’s index</th>
</tr>
</thead>
<tbody>
<tr>
<td>sPDGFRβ (pg/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All patients</td>
<td>F ≥ 2</td>
<td>0.7303</td>
<td>0.6395 to 0.8211</td>
<td><0.0001</td>
<td>6003</td>
<td>82.47</td>
<td>62.00</td>
<td>80.49</td>
<td>65.03</td>
</tr>
<tr>
<td></td>
<td>F ≥ 3</td>
<td>0.6446</td>
<td>0.5565 to 0.7327</td>
<td>0.002552</td>
<td>5861</td>
<td>82.35</td>
<td>40.51</td>
<td>54.06</td>
<td>72.97</td>
</tr>
<tr>
<td></td>
<td>F = 4</td>
<td>0.6409</td>
<td>0.5457 to 0.7360</td>
<td>0.008703</td>
<td>7497</td>
<td>75.00</td>
<td>48.60</td>
<td>35.08</td>
<td>83.99</td>
</tr>
<tr>
<td>Fib-4</td>
<td>All patients</td>
<td>F ≥ 2</td>
<td>0.6635</td>
<td>0.5690 to 0.7581</td>
<td>0.002295</td>
<td>1.495</td>
<td>65.52</td>
<td>68.18</td>
<td>79.66</td>
</tr>
<tr>
<td></td>
<td>F ≥ 3</td>
<td>0.7123</td>
<td>0.6225 to 0.8022</td>
<td><0.0001</td>
<td>1.495</td>
<td>74.58</td>
<td>62.5</td>
<td>62.83</td>
<td>74.31</td>
</tr>
<tr>
<td></td>
<td>F = 4</td>
<td>0.8344</td>
<td>0.7623 to 0.9065</td>
<td><0.0001</td>
<td>1.495</td>
<td>93.94</td>
<td>59.18</td>
<td>46.01</td>
<td>96.34</td>
</tr>
<tr>
<td>APRI</td>
<td>All patients</td>
<td>F ≥ 2</td>
<td>0.6309</td>
<td>0.5331 to 0.7286</td>
<td>0.01466</td>
<td>0.4849</td>
<td>44.83</td>
<td>79.55</td>
<td>80.66</td>
</tr>
<tr>
<td></td>
<td>F ≥ 3</td>
<td>0.6723</td>
<td>0.5779 to 0.7667</td>
<td>0.0007139</td>
<td>0.5718</td>
<td>44.07</td>
<td>87.5</td>
<td>74.98</td>
<td>64.79</td>
</tr>
<tr>
<td></td>
<td>F = 4</td>
<td>0.7965</td>
<td>0.7028 to 0.8902</td>
<td><0.0001</td>
<td>0.7002</td>
<td>60.61</td>
<td>90.82</td>
<td>70.98</td>
<td>86.16</td>
</tr>
<tr>
<td>AST/ALT ratio</td>
<td>All patients</td>
<td>F ≥ 2</td>
<td>0.5976</td>
<td>0.4952 to 0.7001</td>
<td>0.07019</td>
<td>1.174</td>
<td>28.41</td>
<td>90.7</td>
<td>85.32</td>
</tr>
<tr>
<td></td>
<td>F ≥ 3</td>
<td>0.6423</td>
<td>0.5462 to 0.7383</td>
<td>0.005081</td>
<td>1.174</td>
<td>39.34</td>
<td>92.86</td>
<td>82.40</td>
<td>64.29</td>
</tr>
<tr>
<td></td>
<td>F = 4</td>
<td>0.7486</td>
<td>0.6458 to 0.8515</td>
<td><0.0001</td>
<td>1.184</td>
<td>55.88</td>
<td>91.75</td>
<td>71.49</td>
<td>84.88</td>
</tr>
</tbody>
</table>

Table 3

Accuracy of PRTA-score, sPDGFRβ/albumin, sPDGFRβ/thrombocyte numbers, and sPDGFRβ for the detection of significant fibrosis ($F \geq 2$), advanced fibrosis ($F \geq 3$), and cirrhosis ($F = 4$), in the total patient cohort.

<table>
<thead>
<tr>
<th></th>
<th>AUC</th>
<th>95% CI</th>
<th>p-value</th>
<th>Optimal Cut-off</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
<th>Youden’s index</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRTRA-score</td>
<td>F ≥ 2</td>
<td>0.7849</td>
<td>0.6995 to 0.8702</td>
<td><0.0001</td>
<td>7.804</td>
<td>77.11</td>
<td>73.17</td>
<td>84.54</td>
<td>62.69</td>
</tr>
<tr>
<td></td>
<td>F ≥ 3</td>
<td>0.7470</td>
<td>0.6586 to 0.8355</td>
<td><0.0001</td>
<td>9.979</td>
<td>70.91</td>
<td>78.26</td>
<td>73.49</td>
<td>75.99</td>
</tr>
<tr>
<td></td>
<td>F = 4</td>
<td>0.7995</td>
<td>0.7122 to 0.8868</td>
<td><0.0001</td>
<td>11.01</td>
<td>80.65</td>
<td>74.19</td>
<td>53.64</td>
<td>91.19</td>
</tr>
<tr>
<td>[sPDGFRβ (pg/mL)/albumin (g/L)]</td>
<td>All patients</td>
<td>F ≥ 2</td>
<td>0.7431</td>
<td>0.6494 to 0.8369</td>
<td><0.0001</td>
<td>140.0</td>
<td>85.88</td>
<td>54.76</td>
<td>78.31</td>
</tr>
<tr>
<td></td>
<td>F ≥ 3</td>
<td>0.6702</td>
<td>0.5771 to 0.7633</td>
<td>0.000194</td>
<td>251.4</td>
<td>49.12</td>
<td>77.14</td>
<td>64.61</td>
<td>64.08</td>
</tr>
<tr>
<td></td>
<td>F = 4</td>
<td>0.6938</td>
<td>0.5902 to 0.7971</td>
<td>0.001079</td>
<td>253.4</td>
<td>59.38</td>
<td>73.68</td>
<td>45.52</td>
<td>83.04</td>
</tr>
<tr>
<td>[sPDGFRβ (pg/mL)/(thrombocytes (×10^9))/100)]</td>
<td>All patients</td>
<td>F ≥ 2</td>
<td>0.7672</td>
<td>0.6808 to 0.8535</td>
<td><0.0001</td>
<td>3.707</td>
<td>69.32</td>
<td>77.27</td>
<td>85.29</td>
</tr>
<tr>
<td></td>
<td>F ≥ 3</td>
<td>0.7360</td>
<td>0.6487 to 0.8233</td>
<td><0.0001</td>
<td>4.039</td>
<td>75.00</td>
<td>70.83</td>
<td>68.61</td>
<td>76.92</td>
</tr>
<tr>
<td></td>
<td>F = 4</td>
<td>0.7701</td>
<td>0.6780 to 0.8622</td>
<td><0.0001</td>
<td>4.589</td>
<td>76.47</td>
<td>74.49</td>
<td>52.61</td>
<td>89.52</td>
</tr>
<tr>
<td>sPDGFRβ (pg/mL)</td>
<td>All patients</td>
<td>F ≥ 2</td>
<td>0.7303</td>
<td>0.6395 to 0.8211</td>
<td><0.0001</td>
<td>6003</td>
<td>82.47</td>
<td>62.00</td>
<td>80.49</td>
</tr>
<tr>
<td></td>
<td>F ≥ 3</td>
<td>0.6446</td>
<td>0.5565 to 0.7327</td>
<td>0.002552</td>
<td>5861</td>
<td>82.35</td>
<td>40.51</td>
<td>54.06</td>
<td>72.97</td>
</tr>
<tr>
<td></td>
<td>F = 4</td>
<td>0.6409</td>
<td>0.5457 to 0.7360</td>
<td>0.008703</td>
<td>7497</td>
<td>75.00</td>
<td>48.60</td>
<td>35.08</td>
<td>83.99</td>
</tr>
</tbody>
</table>
numbers into a novel diagnostic algorithm: the PRTA-score. Next, the
diagnostic value of sPDGFRβ levels and the PRTA-score were confirmed
in an independent NAFLD-patient cohort, with histological staging of fi-
brosis in liver biopsies (Fig. 5).

Serological markers are considered the ideal way for diagnosis,
thanks to their non-invasive quality, easy implementation in routine
analysis, low cost, dynamic character, and no inter-and intra-observer
variability [28]. We previously identified an enhanced presence of
PDGFRβ on EVs extracted from the circulation of patients with early fi-
brosis (F ≤ 2) caused by chronic HBV or HCV infection [18]. Concentrat-
ing solely on EVs as biomarkers for fibrosis would significantly weaken
the clinical relevance as the current clinical setting is not yet ready for
implementation of EV analysis in its workflow [8]. We therefore fo-
cused on total circulating sPDGFRβ, either EV-bound or freely circulat-
ing, and showed that the sPDGFRβ levels have a very good diagnostic
value for significant liver fibrosis when integrated into the PRTA-score.
Since albumin and thrombocyte levels are already integrated in the clin-
ical setting as easy, cheap, and commercially available biochemical anal-
ysis panels, we expect only limited additional costs for integration of
the PRTA-score. As our scoring system solely relies on the analysis of circu-
lating factors, it can be executed in almost every clinical centre, which is
in strong contrast to the exclusive presence of liver biopsy and transient
elastography in large and well-equipped hospitals. Additionally, com-
pared to these latter diagnostic manners, our PRTA-score only requires
limited human resources, which reduces the eventual costs on the pa-
ient and health care system. We thus anticipate that this easy and
cost-effective PRTA analysis could facilitate screening of at-risk patients,
and thus identify those patients who need liver biopsy for more specific
evaluation of the extent and potential cause of liver injury. Eventually,
this could lead to an earlier therapeutic intervention, leading to a de-
cline in liver-associated morbidity and mortality and a further reduction
of the current financial weight on the health care system.

One of the major weaknesses of current clinical and experimental
scoring systems for liver fibrosis, is their limited or non-existing valida-
tion in multiple aetiologies of liver disease. More precisely, most of the
diagnostic studies focus on patients with chronic viral hepatitis, and
thus can only speculate its utility in patients with other causes of liver
disease [29]. We therefore put focus on the aetiology-independence of
our newly developed PRTA-score, as demonstrated by its high AUC
values for the diagnosis of significant liver fibrosis in each aetiology-
specific patient cohort (Supplementary Tables 3 and 5) superior to
those obtained by the clinical scores Fib-4, APRI, and AST/ALT ratio
(Supplementary Table 4). Additionally, the cut-off values of the PRTA-
score for diagnosis of significant liver fibrosis (Supplementary Table 5)
are comparable between viral liver disease (7.748), NAFLD (7.321),
and alcoholic liver disease (7.738), in contrast to the high variability be-
tween aetiologies observed in the other clinical scores (Supplementary
Table 4). Such aetiology-independent cut-off values, and the possibility
to use one consensus standard cut-off value would create uniformity in
all clinical centres, which is currently not the case for some diagnostic
tools for liver fibrosis e.g. transient elastography [20]. Finally, we val-
dated the aetiology-independence of our PRTA-score in an independent
patient cohort, consisting of NAFLD-patients with extremely high BMIs
(44–57 kg/m²). This cohort shows that potential negative effects of
aetiology-specific characteristics, such as the high BMI and extensive
liver steatosis did not affect the PRTA-score (Fig. 5).

This study does have some limitations. In particular, the number of
included patients is relatively low. However, despite these low patient
numbers, there is a good correlation of the results over all 3 aetiol-
ologies of liver disease which affirms the obtained results and encour-
ages further study of the diagnostic utility of the PRTA-score. An
inequality in patient numbers representing each stage of the fibrosis
progression is also present (Supplementary Table 2). In the initial
population, especially the stages significant (n = 29) and advanced
(n = 28) fibrosis were less represented, as compared to mild fibrosis
(n = 51) and cirrhosis (n = 40), what could have led to some inconsi-
tistent cut-off values.

As our validation patient cohort solely included biopsy-staged
NAFLD-patients, future prospective studies should focus on the further
validation of the obtained results in biopsy-staged patients with other
aetiologies of liver disease. Effectuating elastography measurements
and serological assessment on patients which underwent liver biopsy,
requires a substantial investment, but could provide information on
the possibility to replace costly imaging modalities by the PRTA score.
Additionally, it would be interesting to include patients from longitudi-
nal studies, in which the cause of injury was eliminated. The resolution
of liver fibrosis is based on a decline of activated HSCs in the liver, prior
to degradation of extracellular matrix (ECM) [30]. Current non-invasive
diagnostic tools fail in the sensitive and specific follow-up of liver reso-
lution, which is not that surprising, considering they often rely on ECM
content evaluation, as applies to the ELF score and most of the imaging

![Fig. 4. Performance comparison of sPDGFRβ, PRTA-score and Fib-4 in the diagnosis of liver fibrosis/cirrhosis in a heterogeneous patient population. Receiver operating characteristic (ROC) curves for the non-invasive diagnosis of significant fibrosis (F ≥ 2), advanced fibrosis (F ≥ 3), and cirrhosis (F = 4) comparing sPDGFRβ levels, the sPDGFRβ-containing PRTA-score, and Fib-4 score.](image-url)
modalities. True early events of fibrosis resolution, being the deactivation and elimination of myofibroblasts due to senescence, apoptosis, and inactivation [30], are not considered by these scoring systems. We hypothesize that a reduction of activated HSCs, and thus PDGFRβ-positive cells, can be evaluated by circulating sPDGFRβ levels and the derived PRTA-score, providing better follow-up of fibrosis resolution. Follow-up studies will aim at comparing the sensitivity to detect fibrosis resolution by the PRTA-score, liver biopsy and elastography. Additionally, the non-invasive character of the PRTA-score might also lead to a lower threshold to participate in clinical trials and their subsequent follow-up studies, resulting in higher trial participation rates. As our research solely focused on the diagnostic value of circulating sPDGFRβ, follow-up experiments investigating its mechanistical and functional role would be of great interest. In particular, functional differences between PDGFRβ sorted into EVs and those circulating as free proteins, could lead to novel insights in the intercellular communication mechanisms during liver fibrosis.

In conclusion, the current study demonstrates that the sPDGFRβ-containing PRTA-score is an accurate, inexpensive and simple scoring algorithm to diagnose significant liver fibrosis in a heterogeneous patient population. With validation in larger patient cohorts, this serological test could become an important tool for non-invasive clinical assessment of liver fibrosis in the future.

Acknowledgments

We would like to acknowledge Aneta Kozyra, Danielle Blyweert, and Iona De Mol for technical support. We thank Prof. Karin Vanderkerken for the use of the ZetaView® PMX110. We thank Dr. Bert Van den Bossche (Department of Hepatobiliary and Pancreas Surgery, ASZ Aalst) and prof. Daniel Jacobs-Tulleneers-Thevissen (Department of Thoracic and Transplantation Surgery and Surgical Oncology, University Hospital Brussels) for providing human tissue. We thank Prof. Niedergethmann and Dr. Hasenberg (Department for General- and Visceral Surgery, Alfred Krupp Hospital, Essen, Germany) for sample collection of the validation cohort. We also would like to thank Prof. Margarete Odenthal (Institute for Pathology, University Hospital Cologne), Prof. Hideo A. Baba (Institute for Pathology, University Hospital Essen), and Prof. Johannes Haybäck (Institute for Pathology, University Hospital Magdeburg) for histological preparation and assessments for the validation cohort.

Financial support

This work was supported by the Vrije Universiteit Brussel, the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Flanders) (HILIM-3D: SBO140045), and the Fund of Scientific Research Flanders (FWO) to LvG and IM. Funding sources had no involvement in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Conflicts of interest

JL and LvG are inventors of the pending patent “Soluble PDGFR beta as a biomarker for liver fibrosis”. No other potential conflicts of interest to disclose.

Author contributions

JL study concept and design; acquisition of data; analysis and interpretation of data; statistical analysis; drafting of the manuscript. SV analysis and interpretation of data. IM interpretation of data; critical revision of the manuscript. JPS, JB, and AC provision of samples; critical revision of the manuscript. HR provision of samples; interpretation of data; critical revision of the manuscript. LvG study concept and design; interpretation of data; critical revision of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ebiom.2019.04.036.

References
