ES-Working Paper no. 13

PRESERVATION OF STOCHASTICITY AFTER PERTURBATIONS

Pieter-Jan Pauwelyn and Marie-Anne Guerry

March 14th, 2019
Vrije Universiteit Brussel – Pleinlaan 2, 1050 Brussel – www.vub.be – info@vub.be
© Vrije Universiteit Brussel
Working paper: Preservation of stochasticity after perturbations

P.J. PAUWELYNA and M.A. GUERRYB

1 Introduction and problem setting

In [1], the SCEP-algorithm is introduced aiming to perturb a non-diagonalizable stochastic matrix A in a diagonalizable stochastic matrix \tilde{A} with preservation of spectral properties. Given a non-diagonalizable stochastic 3×3 matrix A with real eigenvalues 1 and λ, the SCEP-algorithm determines a matrix E such that \tilde{A} suffices the following conditions:

(a) $\tilde{A} = A + E$ is an additive perturbation of A.

(b) \tilde{A} is a stochastic matrix.

(c) spec $\{\tilde{A}\} \subset \mathbb{R}$, $\mu \neq \nu$ and $\exists \delta > 0, \exists E \in \mathbb{R}^{3 \times 3}$ such that $|\mu - \lambda| < \delta \land |\nu - \lambda| < \delta$.

(d) The eigenspaces corresponding to the eigenvalue 1 of the matrices A and \tilde{A} coincide.

The conditions (a), (b) and (d) result in a perturbation matrix of the form:

$$E = \begin{pmatrix}
v_2(\epsilon_{22} + \epsilon_{23}) + v_3(\epsilon_{32} + \epsilon_{33}) & -v_2\epsilon_{22} - v_3\epsilon_{32} & -v_2\epsilon_{23} - v_3\epsilon_{33} \\
-v_1(\epsilon_{22} + \epsilon_{23}) & v_1\epsilon_{22} & v_1\epsilon_{23} \\
-v_1(\epsilon_{32} + \epsilon_{33}) & v_1\epsilon_{32} & v_1\epsilon_{33}
\end{pmatrix} \quad (1)$$

with four remaining perturbation variables $\epsilon_{22}, \epsilon_{23}, \epsilon_{32}$ and ϵ_{33} and $v = (v_1, v_2, v_3) \in V_L(1)$ a nonnegative left eigenvector corresponding to the eigenvalue 1. For condition (c), the directional derivative of the discriminant Δ:

$$D_2\Delta(A) = (a_{12} - a_{13} - a_{22} + a_{33})(-v_2\epsilon_{22} - v_3\epsilon_{32} - v_2\epsilon_{23} - v_3\epsilon_{33} - v_1\epsilon_{22} + v_1\epsilon_{33})$$

$$+ 2(a_{13} - a_{23})(-v_2\epsilon_{22} - v_3\epsilon_{32} - v_1\epsilon_{23}) + 2(a_{12} - a_{23})(-v_2\epsilon_{23} - v_3\epsilon_{33} - v_1\epsilon_{23})$$

$$= KE_{22} + LE_{23} + ME_{32} + NE_{33} \quad (2)$$

must be positive.

In order to result in a stochastic matrix \tilde{A}, the perturbation matrix E coming from the SCEP-algorithm should have positive matrix-elements corresponding to zero elements of the matrix A and should have negative elements corresponding to the 1 elements of A. In this working paper, we verify whether every stochastic 3×3 matrix can be perturbed such that the result is again a stochastic matrix. The focus is on the 0 and 1 elements in a stochastic 3×3 matrix. To end up with a stochastic matrix \tilde{A}, the question is whether there exists a perturbation matrix E with perturbations on the zero elements of A that are positive, while the perturbations on the 1 elements of A are negative.
We check this for all stochastic 3×3 matrices as follows. We partition the set of stochastic matrices, based on the number of zero entries in the stochastic matrices. A stochastic 3×3 matrix has 9 elements, therefore we consider the case of 9 zero elements up to the case of no zero elements in the stochastic 3×3 matrix A. In each case, we show that it is possible to perturb a stochastic 3×3 matrix such that all elements of the perturbed matrix $\tilde{A} = A + E$ are in the interval $[0, 1]$. This will be done in one of two ways: Either we present a concrete example of a perturbed matrix \tilde{A} which suffices the conditions (a)-(d), or we prove there exists a perturbation matrix which satisfies the conditions (a)-(d).

2 Useful lemmas in reducing the number of cases

Lemma 2.1. If a non-diagonalizable stochastic 3×3 matrix A contains a 2×2 submatrix without a zero element, then there exists a perturbation matrix E which suffices the condition (a)-(d).

Proof. If a non-diagonalizable stochastic 3×3 matrix A contains a 2×2 submatrix without a zero element, we will only consider the perturbation elements ϵ_{ij} on this 2×2 submatrix and set the other perturbation variables equal to zero. Since E has the form (1), a system with five equations and four variables with rank 3 arises. Therefore, the four remaining perturbation elements only depend on 1 perturbation variable, say x. Now there are three possibilities for the directional derivative $D_x \Delta(A)$:

- If $D_x \Delta(A) = kx$, with $k > 0$, then choose $x > 0$. This is possible, since the sign of x doesn’t matter for the matrix A as long as x is chosen small enough, A is a stochastic matrix.
- If $D_x \Delta(A) = kx$, with $k < 0$, then choose $x < 0$ (for the same reason as the previous case).
- If $D_x \Delta(A) = 0$, then we consider $D_x^2 \Delta(A) = (\epsilon_{22}(v_1 + v_2) + \epsilon_{23}v_2 + \epsilon_{32}v_3 + \epsilon_{33}(v_1 + v_3))^2 + 4(\epsilon_{23}\epsilon_{32} - \epsilon_{22}\epsilon_{33})v_1(v_1 + v_2 + v_3)$. Since we have only 1 perturbation variable, it is easily verified that the second term is equal to zero. Therefore, only a nonzero quadratic term remains, which can be chosen positive. The sign of x doesn’t matter, since for x chosen small enough, the matrix-elements of A are elements of the interval $[0, 1]$, because the 2×2 submatrix only consists of elements in the open interval $(0, 1)$.

Because of this lemma, we don’t have to investigate the cases of 0, 1 or 2 zero elements in the matrix A, since a non-diagonalizable stochastic 3×3 matrix with maximum 2 zero elements always contains a 2×2 submatrix with no zero element.

A non-diagonalizable stochastic 3×3 matrices A satisfies (see [1]):

$$[\text{tr}(A) - 1]^2 - 4 \det(A) = 0$$

This equality is useful to determine whether a stochastic 3×3 matrix is non-diagonalizable. Another useful lemma in reducing the number of matrices to be examined is the following:

Lemma 2.2. If a perturbation matrix E exists for a non-diagonalizable stochastic 3×3 matrix A, then there exists a perturbation matrix F for every non-diagonalizable stochastic 3×3 matrix TA^{-1}, with T a permutation matrix.

Proof. Consider $\tilde{A} = A + E$, which suffices the conditions (a)-(d). Then $T \tilde{A} T^{-1} = T(A + E)T^{-1} = TAT^{-1} + TET^{-1}$ suffices also the conditions (a)-(d):

(a) $T \tilde{A} T^{-1} = TAT^{-1} + TET^{-1}$ is an additive perturbation of TAT^{-1}.
(b) $T\tilde{A}T^{-1}$ is a stochastic matrix, since \tilde{A}, T and T^{-1} are stochastic matrices.

c) $T\tilde{A}T^{-1}$ has distinct eigenvalues, since \tilde{A} has distinct eigenvalues and a similarity transformation preserves the eigenvalues.

d) $T\tilde{A}T^{-1}$ has the same principal left eigenvector as TAT^{-1}, since \tilde{A} has the same principal left eigenvector as A.

3 Finding perturbations preserving stochasticity

Since a stochastic matrix has rowsums 1, a stochastic matrix with 7, 8 or 9 elements equal to zero doesn’t exist. Therefore we can disregard these cases and start with the case of 6 zero elements. In this paragraph, we denote the perturbation variable x, which we consider to be positive and sufficiently small. We also use parameters to describe the different cases. These parameter are a, b and c, and they lie in the interval (0, 1).

3.1 6 zero elements

The only options for a stochastic matrix with 6 zero elements, are the matrices with a 1 and two 0’s on each row. The stochastic matrices which have 6 zero elements and are non-diagonalizable are:

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
\]

Since these six matrices are all permutations of each other, it is sufficient to show that one of these matrices has a SCEP-perturbation such that it remains stochastic, according to lemma 2.2. The matrix

\[
A = \begin{pmatrix}
0 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
\]

can be perturbed via the SCEP-algorithm into the matrix

\[
\tilde{A} = \begin{pmatrix}
0 & 1 - x & x \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}
\]

One can verify that A and \tilde{A} both have principal left eigenvector $(0,1,0)$ and \tilde{A} has three distinct eigenvalues 1, \sqrt{x} and $-\sqrt{x}$. In this way, condition (a)-(d) are fulfilled.

3.2 5 zero elements

A stochastic 3×3 matrix with five zero elements must have two rows consisting of a 1 and two 0’s and a third row consisting of a zero, an element b and an element $1-b$, with $0 < b < 1$. The non-diagonalizable stochastic 3×3 matrices are the following:

\[
\begin{pmatrix}
0 & b & 1-b \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & b & 1-b \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & b & 1-b \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & b & 1-b \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & b & 1-b \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & b & 1-b \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & b & 1-b \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & b & 1-b \\
0 & 0 & 1
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]
and their permutations. The first six matrices are all perturbations of each other, therefore only one of those matrices must be examined. If we consider

\[B = \begin{pmatrix} 0 & b & 1-b \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \]

then

\[\tilde{B} = \begin{pmatrix} x & b-x & 1-b \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \]

with \(0 < x \ll b \), is a possible perturbation, resulting from the SCEP-algorithm. \(\tilde{B} \) has principal left eigenvector \((0, 0, 1)\), just as \(B \). And \(\tilde{B} \) has three distinct eigenvalues 1, 0 and \(x \).

The matrices

\[C = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 3/4 & 1/4 & 0 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1/4 & 3/4 & 0 \end{pmatrix} \]

can be perturbed into

\[\tilde{C} = \begin{pmatrix} x & 0 & 1-x \\ 1-4x & 0 & 4x \\ 3/4 & 1/4 & 0 \end{pmatrix} \quad \text{and} \quad \tilde{D} = \begin{pmatrix} 4x & 1-4x & 0 \\ 0 & 0 & 1 \\ 1/4-x & 3/4+x & 0 \end{pmatrix} \]

3.3 4 zero elements

The stochastic matrices with 4 zero elements consist of two rows with a zero and two terms which add to 1 and a row with a 1 and two 0’s. The matrices which have a \(2 \times 2 \) submatrix without 0’s do not have to be examined because we know that they can be perturbed in the proposed manner, according to lemma 2.1. In this case, the non-diagonalizable variants of these matrices are:

\[A = \begin{pmatrix} a & 1-a & 0 \\ b & 0 & 1-b \\ 1 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} a & 1-a & 0 \\ 0 & b & 1-b \\ 1 & 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} a & 1-a & 0 \\ 0 & b & 1-b \\ 0 & 0 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} a & 1-a \\ b & 1-b & 0 \\ 0 & 1 & 0 \end{pmatrix} \]

\[G = \begin{pmatrix} a & 1-a \\ 0 & 0 & 1-b \\ 1 & 0 & 0 \end{pmatrix} \quad \text{and} \quad H = \begin{pmatrix} a & 1-a \\ b & 0 & 1-b \\ 0 & 1 & 0 \end{pmatrix} \]

The matrix \(A \) is only be non-diagonalizable if \(a = 4b - 3 \). Therefore, we consider the matrix

\[A' = \begin{pmatrix} 4b-3 & 4-4b & 0 \\ b & 0 & 1-b \\ 1 & 0 & 0 \end{pmatrix}. \]

\(A' \) can be perturbed by the SCEP-algorithm into the stochastic matrix:

\[\tilde{A}' = \begin{pmatrix} 4b-3-4(1-b)x & 4-4b & 4(1-b)x \\ b+x & 0 & 1-b-x \\ 1 & 0 & 0 \end{pmatrix}. \]

The matrix \(B \) is only non-diagonalizable if \(b = 1-a + 2\sqrt{1-a} \). Therefore, we consider the matrix

\[B' = \begin{pmatrix} a & 1-a \\ 0 & a-1+2\sqrt{1-a} \\ 1 & 0 & 2-a-2\sqrt{1-a} \end{pmatrix}. \]
B' can be perturbed by the SCEP-algorithm into the stochastic matrix

$$
\tilde{B}' = \begin{pmatrix}
a & 1 - a & 0 \\
0 & a & 1 - a \\
0 & 0 & 1
\end{pmatrix}.
$$

The matrix C is only non-diagonalizable if $a = b$. Therefore, we consider the matrix

$$
C' = \begin{pmatrix}
a & 1 - a & 0 \\
0 & a & 1 - a \\
0 & 0 & 1
\end{pmatrix}.
$$

C' can be perturbed by the SCEP-algorithm into the stochastic matrix

$$
\tilde{C}' = \begin{pmatrix}
a - x & 1 - a & x \\
x & b & 1 - b - x \\
0 & 0 & 1
\end{pmatrix}.
$$

The matrix D is only non-diagonalizable if $b = 4 - 4a$. Therefore, we consider the matrix

$$
D' = \begin{pmatrix}
0 & a & 1 - a \\
4 - 4a & 4a - 3 & 0 \\
0 & 1 & 0
\end{pmatrix}.
$$

D' can be perturbed by the SCEP-algorithm into the stochastic matrix

$$
\tilde{D}' = \begin{pmatrix}
0 & a & 1 - a \\
4 - 4a - 4(1 - a)^2x & 4a - 3 + 4(1 - a)^2x & 0 \\
x & 1 - x & 0
\end{pmatrix}.
$$

The matrix G is only non-diagonalizable if $a = \frac{1}{4-4b}$. Therefore, we consider the matrix

$$
G' = \begin{pmatrix}
0 & \frac{1}{4-4b} & \frac{3-4b}{4-4b} \\
b & 0 & 1 - b \\
1 & 0 & 0
\end{pmatrix}.
$$

G' can be perturbed by the SCEP-algorithm into the stochastic matrix

$$
\tilde{G}' = \begin{pmatrix}
0 & a - x & \frac{1 - a + x}{(4 - 4b)x} \\
\frac{1}{4-4a} & \frac{3-4a}{4-4a} & \frac{3 - 4a}{4-4a} - (4 - 4b)x \\
1 & 0 & 0
\end{pmatrix}.
$$

The matrix H is only non-diagonalizable if $b = \frac{1}{4-4a}$. Therefore, we consider the matrix

$$
H' = \begin{pmatrix}
0 & a & 1 - a \\
\frac{1}{4-4a} & 0 & \frac{3-4a}{4-4a} \\
0 & 1 & 0
\end{pmatrix}.
$$

H' can be perturbed by the SCEP-algorithm into the stochastic matrix

$$
\tilde{H}' = \begin{pmatrix}
0 & a + (4 - 5a)x & 1 - a - (4 - 5a)x \\
\frac{1}{4-4a} & 0 & \frac{3-4a}{4-4a} \\
0 & 1 - x & \frac{3 - 4a}{4-4a}
\end{pmatrix}.
$$
3.4 3 zero elements

In the case of stochastic 3×3 matrices with 3 zero elements, with the help of lemma 2.1, only two possibilities remain, namely:

$$A = \begin{pmatrix} a & 1-a & 0 \\ b & 0 & 1-b \\ 0 & c & 1-c \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 1-a & a \\ b & 0 & 1-b \\ c & 1-c & 0 \end{pmatrix}$$

The stochastic matrix A is never non-diagonalizable, since $[\text{tr}(A) - 1]^2 - 4 \det(A) > 0$. It is possible to perturb the stochastic matrix B via the SCEP-algorithm, if $K > 0$, $L > 0$, $M > 0$ or $N > 0$. If one of these inequalities holds, then we only perturb on the corresponding perturbation element (according to (2)) with a positive perturbation. This results in a positive perturbation on $b_{11} = 0$, and thus $b_{11} > 0$. For example, if $L > 0$, then we perturb on b_{23} with $\epsilon_{23} > 0$. This leads to a negative perturbation on b_{13} and b_{21} and a positive perturbation on b_{11}.

The case that $K < 0$, $L < 0$, $M < 0$ and $N < 0$ does not happen: The matrix B is only non-diagonalizable if $1 - a - b \neq 0$ and $c = \frac{\frac{1}{4} - ab}{1-a-b}$. For $\frac{\frac{1}{4} - ab}{1-a-b}$ to be an element of the interval $[0,1]$, the pair (a,b) is restricted to the region where $a > \frac{1}{4b}$ or $a < \frac{3-4b}{4-4b}$, the solutions (a,b) are represented by the regions G and H in figure 1. The blue lines represent the pairs (a,b) where $L = 0$, within those blue lines, we have that $L < 0$. It is clear from figure 1 that for every pair (a,b) with $a > \frac{1}{4b}$ or $a < \frac{3-4b}{4-4b}$, we have that $L > 0$. Since L is always positive in this case, it is possible to determine a perturbation with $\epsilon_{23} > 0$ and $\epsilon_{22} = \epsilon_{32} = \epsilon_{33} = 0$ such that there exists an E that suffices the conditions (a)-(d).

3.5 Conclusion

The paper shows for all possible cases (some explicitly and some via lemma 2.1) that there exists a perturbation matrix E such that the conditions (a)-(d) are sufficed. From this, we can conclude that for every zero-element $a_{ij} = 0$ in a stochastic matrix, there exists a perturbation matrix E with $\epsilon_{ij} > 0$ such that the conditions (a)-(d) are sufficed.
References