Phosphogenesis associated with the Shuram Excursion: Petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China
Cui, Huan; Xiao, Shuhai; Zhou, Chuanming; Peng, Yongbo; Kaufman, Alan J.; Plummer, Rebecca E.

Published in:
Sedimentary Geology

DOI:
10.1016/j.sedgeo.2016.05.008

Publication date:
2016

Document Version:
Final published version

Link to publication

Citation for published version (APA):
Phosphogenesis associated with the Shuram Excursion: Petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China

Huan Cui, Shuhai Xiao, Chuanming Zhou, Yongbo Peng, Alan J. Kaufman, Rebecca E. Plummer

1. Introduction

Phosphorus, a nonmetal element and bio-limiting nutrient, is relatively rare but vastly important to marine primary productivity (Tyrrell, 1999). Fluctuations in phosphorus cycling in the oceans on geological time scales are thought to be intimately linked to the global carbon cycle, atmospheric oxygenation, and biological evolution (Brierly, 1992; Saltzman, 2005; Planavsky et al., 2010). This regard, the sedimentary record of phosphorite may be used to investigate variations in biological productivity at geological timescales. Authigenic carbonates, microbial sulfate reduction, and fossil phosphatization are responsible for the preservation of a significant portion of Ediacaran biodiversity that is documented in the literature (Xiao et al., 2014; Muscente et al., 2015).

Despite intensive research on modern phosphorites (e.g., Arning et al., 2009), much less is known about how phosphorites in deep time were formed. The Ediacaran and Early Cambrian periods witnessed a series of widespread phosphogenic events that stand out in Earth history (Cook and Shergold, 1984; Cook, 1992; Papineau, 2010). How-ever, our understanding of the origin of these phosphorites remains incomplete. In South China, Ediacaran and Cambrian phosphorites are widely distributed and richly fossiliferous (Li, 1986; Yeh et al., 1986; Muscente et al., 2015).
including acritarchs (Zhou et al., 2001; Xiao et al., 2014b), multicellular algae (Xiao et al., 2004), and putative animals (Xiao et al., 1998, 2014a; Yin et al., 2015) have been reported from phosphorites of the Ediacaran Doushantuo Formation in Guizhou Province. Phosphatized animals, including cnidarians and early scoliodophorans, have been reported from phosphorites of the early Cambrian Kuanchuanpu Formation of Shaanxi and Sichuan provinces (Dong et al., 2004, 2013; Liu et al., 2014b; Zhang et al., 2015). Thus, a better understanding of Ediacaran phosphogenesis provides insights into the taphonomy of early animals across the Ediacaran–Cambrian transition.

It has long been speculated that phosphorous enrichment in pore waters for authigenic carbonate fluorapatite mineralization is achieved by organic carbon degradation (Glenn and Arthur, 1990; Filippelli, 2001, 2008). Previous studies in modern settings have shown that degradation of organic matter via microbial sulfate and iron reduction is the predominant anaerobic respiration process in marine sediments (Jørgensen, 1982; Thamdrup and Canfield, 1996; Jørgensen and Kasten, 2006). However, conclusive evidence linking microbial sulfate and iron reduction and Ediacaran phosphogenesis is lacking. In this study, we conducted systematic petrographic and isotopic investigation of phosphorite samples collected from the uppermost Doushantuo Formation at the outer shelf Yangjiaping and Zhongling sections, and provide direct geological evidence for microbially-mediated phosphogenesis during the Ediacaran Period.

2. Geological background

Ediacaran successions in the Yangtze block of South China include the richly fossiliferous Doushantuo and Dengying formations (Fig. 1A, B). Abundant three-dimensionally preserved eukaryotes, including multicellular algae, acritarchs, and putative animals, have been discovered from phosphorites and chert nodules of the Doushantuo Formation (Xiao et al., 1998; Liu et al., 2014a; Xiao et al., 2014b), while the Dengying Formation contains macroscopic Ediacaran body and trace fossils. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 1. (A) Simplified map of China, showing the location of the Yangtze Craton (in yellow color). (B) Reconstructed Ediacaran depositional environments on the Yangtze Craton (Jiang et al., 2011). Red dots mark the locations of the Yangjiaping and Zhongling sections where samples for this study were collected, and the Jiujiaying section as a reference section for stratigraphic correlation. (C) Simplified litho-, bio-, and chrono-stratigraphy of the Ediacaran Doushantuo and Dengying formations in South China. Modified from Chen et al. (2013). Radiometric ages from Condon et al. (2005) and Schmitz (2012). The red star marks the stratigraphic horizon where samples for this study were collected. (D, E, F) Phosphatic dolostone in the uppermost Doushantuo Formation at the southern Xiaofenghe, Zhongling, and Yangjiaping sections, respectively. Rock hammer for scale is circled. Phosphorite intervals at both Zhongling and Yangjiaping sections are 2–3 m in thickness, and they are mined by local villagers (hence the open mine pit in Fig. 1E–F). Cryo = Cryogenian; Cam = Cambrian.
fossils, including the earliest biomineraling animals (Xiao et al., 2005; Chen et al., 2013, 2014; Meyer et al., 2014; Cui et al., in press). The basal Doushantu Formation overlays the Nantuo diamictite and begins with a ca. 635 Ma cap carbonate (Condon et al., 2005). It has been suggested that the uppermost Doushantu Formation corresponds to ca. 551 Ma (Condon et al., 2005), but based on a recent litho- and chemo-stratigraphic study, the age constraint has been attributed to the lower Dengying Formation, thereby pushing the Doushantuo–Dengying boundary (and the Shuram Excursion preserved there) back in time (An et al., 2015). In the Yangtze Gorges area, the Doushantu Formation is informally divided into four distinct members (Zhou and Xiao, 2007; McFadden et al., 2008) and is typically capped by black shale below the massive dolostones of the Dengying Formation (Zhu et al., 2007; Jiang et al., 2011; Zhu et al., 2013). The mixed shale and carbonate in the inner shelf Jiulongwan section, which is well exposed along a road cut during the construction of the Yangtze Gorges Dam, has a thickness of ~160 m (Jiang et al., 2007; McFadden et al., 2008). In contrast, the carbonate-rich outer shelf sections at Zhongling and Yangjiaping have thicknesses of 215 and 185 m, respectively (Zhu et al., 2007; Jiang et al., 2011; Cui et al., 2015). The Doushantu Formation, deposited in continental slope and basinal environments further to the southeast, is significantly thinner, and dominated by fine-grained siliciclastics intercalated with thin carbonate inter-beds (Jiang et al., 2007; Zhu et al., 2007).

Deposition of the Doushantu Formation can be divided into two stages, beginning with an open ramp shelf that gradually transitioned into a rimmed shelf protecting an intra-shelf lagoon (Jiang et al., 2011). Stratigraphic data and paleogeographic reconstructions indicate an increase in water depth from proximal intertidal environments in the northwest to distal deep basinal settings in the southeast. Three platform facies belts are apparent, including a proximal inner shelf dominated by peritidal carbonates, an intra-shelf lagoon containing mixed carbonates and shales, and an outer shelf shoal complex (Fig. 1B). The Doushantu Formation at the Zhongling section is representative of the shoal complex facies, as is the Yangjiaping section some 4 km to the northeast. At Zhongling and Yangjiaping, the Doushantu Formation is mainly composed of interbedded shales and carbonates, with an up-section increase in the preponderance of intraclastic and oolitic facies, indicating relatively shallow and high-energy depositional environments (Cui et al., 2015). The upper Doushantu Formation in the shoal complex contains several phosphorite intervals that occur just below the overlying Dengying Formation (Jiang et al., 2007, 2011; Kunimitsu et al., 2011), which is characterized by massive dolostone deposited in peritidal environments (Duda et al., 2015) (Fig. 1C).

3. Analytical methods

3.1. Carbonate carbon and oxygen isotope analyses

Powders for δ13Ccarb and δ18Ocarb analyses were collected on polished slabs using a press microdrill. Microdrilling was guided by petrographic fabrics so that different fabrics (e.g., cements, intraclasts, micritic matrix, and carbonate nodules) were sampled separately, in order to characterize the isotopic signatures of different stages of diagenesis. Carbonate δ13Ccarb and δ18Ocarb were measured by GasBench coupled with Thermo Finnigan Delta V Plus in the Department of Geological Sciences at Indiana University or by a MultiFlow reaction inlet system in-line with an Elementar Isoprime. In either case, samples were loaded into 3.7 ml Labco Exetainer vials and sealed with rubber septa were flushed with 99.999% Helium and manually acidified at 72 °C. The carbon dioxide analyte gas was transferred from the Exetainer head space by an automated needle in a stream of ultra-pure He gas, separated by gas chromatography, and water removed with a Nafion trap, prior to its introduction to the source of the stable isotope mass spectrometers. Isotopic results are expressed in the delta notation as per mil (‰) deviations from the V-PDB standard. Precision for δ13Ccarb is routinely better than 0.1‰, and for δ18Ocarb is routinely better than 0.3‰.

3.2. Organic matter carbon isotope analysis

Samples for δ13Corg analysis were prepared from bulk samples. Approximately 10 g of sample trimmed with a rock saw to remove weathered surfaces and secondary veins was crushed to 200 mesh and finer, and then repeatedly acidified with 3 M HCl and washed with ultra-pure (18 MΩ) Milli-Q water until the solution reached neutral pH. Decalcified residues were dried overnight and quantified to determine carbonate percentages, and then accurately weighed and folded into small tin cups for combustion in a Eurovector elemental analyzer. The CO2 released during combustion was separated from other gases with a 3-m stainless steel GC column heated to 60 °C. Organic carbon isotope compositions were measured by an Elementar Isoprime isotope ratio mass spectrometer in the Paleoclimate Co-Laboratory in the Department of Geology at the University of Maryland. Isotopic results are expressed in the delta notation as per mil (‰) deviations from the Vienna Pee Dee Belemnitne (V-PDB) standard. Two urea standards were measured between each set of 10 samples and uncertainties for each analytical session based on these standard analyses were determined to be better than 0.1‰.

3.3. Strontium isotope analysis

Aliquots of micro-drilled powders taken from calcite nodules were used in 87Sr/86Sr analyses. Approximately 10 mg of powder was sequentially leached (3×) in 0.2 M ammonium acetate (pH ~ 8.2) to remove exchangeable Sr from non-carbonate minerals, and then rinsed (3×) with ultra-pure Milli-Q water. The leached powder was centrifuged, decanted, and acidified with doubly distilled 0.5 M acetic acid overnight to remove strontium from the carbonate crystal structure. The supernatant was centrifuged to remove insoluble residues and then decanted, dried, and subsequently dissolved in 200 μl of 3 M HNO3. Strontium separation by cation exchange was carried out using a small polystyrene column containing ~1 cm of Eichrom® Sr spec resin. The column was rinsed with 400 μl of 3 M HNO3 before the dissolved sample was loaded onto the column. After loading, the sample was sequentially eluted with 200 μl of 3 M HNO3, 600 μl of 7 M HNO3, and 100 μl of 3 M HNO3 to remove the Ca, Rb and REE fractions; the Sr fraction adsorbs strongly to the resin in an acidic environment. The Sr fraction was removed by elution with ~800 μl of 0.05 M HNO3 and the resultant eluate was collected and dried. Approximately 200–300 ng of the dried sample was transferred onto a degassed and pre-baked (~4.2 A under high vacuum) high purity Re filament with 0.7 μl of Ta2O5 activator. The prepared filaments were measured using the VG Sector 54 thermal ionization mass spectrometer in the TIMS facility of the University of Maryland Geochemistry Laboratories. Filaments were transferred to a sample carousel, heated under vacuum (~10−7 to 10−8 atm) to a temperature between 1450 °C and 1650 °C, and analyzed when a stable signal (~1.0 V) was detected on the mass 88 ion beam. Approximately 100 87Sr/86Sr ratios were collected for each sample. Final data have been corrected for fractionation using the standard value 86Sr/88Sr = 0.1194. The fraction of 87Sr resulting from in situ decay from 87Rb was removed by measurement of rubidium abundance at mass 85. Repeated analysis of the NBS SRM987 standard yields an average value of 87Sr/86Sr = 0.710245 ± 0.000011 (2σ) during the analytical window.

4. Petrography and paragenesis

In this study, detailed petrographic investigations (Figs. 2, 3) have been conducted on phosphorite samples collected from the uppermost Doushantuo Formation at Yangjiaping and Zhongling of South China. The phosphorite samples contain abundant phosphatic grains and...
intraclasts, as well as authigenic calcite, barite, and silica. The presence of phosphatic intraclasts (Fig. 2A–F) suggests active sediment reworking in shallow marine environments. Authigenic pyrite is abundant in the phosphorite samples (Fig. 2G–L). Some samples also show distinct barite cements (Fig. 3A–C), calcite nodules (Fig. 3G–J), and authigenic silica (Fig. 3D, G, H, J). Many samples are composed of partially dolomitized (Fig. 3E) or silicified (Fig. 3F) intraclastic phosphorite, suggesting multiple stages of diagenesis. It is notable that authigenic calcite nodules are mostly surrounded by a silica or barite rim (Fig. 3G–J). The barite or silica crystals grow centripetally towards the calcite nodule, suggesting that they formed before or simultaneously with the calcite (e.g., Xiao et al., 2010).

We additionally conducted cathodoluminescence (CL) imaging for our thin sections. Authigenic calcites and silica generally show very dim color under CL light (Fig. 3M), indicating low Mn/Fe concentration ratio. Dolomitic cements around the granular phosphorite show bright orange color (Fig. 3N), suggesting an enrichment of Mn relative to Fe during late dolomitization. Many granular phosphorite grains show concentric texture (Fig. 3O), indicating accretionary growth.

Based on the above petrographic observations, we reconstruct the paragenetic sequence as the following: (1) Dissolved phosphate in the water column was transported to the marine sediments via the “Fe–P shuttle” (Shaffer, 1986; Glenn et al., 1994; Nelson et al., 2010). The release of Fe-bound phosphorous after deposition raised the porewater supersaturation levels with regard to phosphate, leading to the precipitation of authigenic phosphate. (2) The abundance of phosphatic intraclasts suggests that Doushantuo phosphorite experienced sedimentary reworking and local transportation. (3) After final deposition, phosphatic intraclasts were cemented by authigenic barite, calcite, pyrite and silica. (4) Late dolomitization and pyrite recrystallization may also occur in some samples. Thus, these studied Doushantuo phosphorite samples recorded multiple stages of reworking and mineralization during early and late diagenesis.

5. Geochemical results

$\delta^{13}C_{\text{carb}}, \delta^{18}O_{\text{carb}}, \delta^{13}C_{\text{org}},$ and $^{87}Sr/^{86}Sr$ data are presented along with photos of polished slabs in Fig. 4 and summarized in Table 1. In sample YJP-R5 (Fig. 4A, B), four micro-drilled powder samples from calcite
nodules gave δ^{13}C_{carb} values (−15.0‰, −10.6‰, −19.1‰, −20.1‰) significantly lower than the dolomicritic matrix (−1.0‰). Sample YJP-R4 shows both authigenic barite and authigenic calcite nodules in phosphorite (Fig. 4C, D). The δ^{13}C_{carb} value of a calcite nodule in YJP-R4 is as low as −34.0‰.

In the intraclastic phosphorite sample YJP-10-2 (Fig. 4E, F), authigenic calcite nodules and disseminated pyrites are abundant, and the δ^{13}C_{carb} values of calcite nodules are −7.3‰, −13.1‰, −17.0‰, −17.7‰, and −23.5‰ at different micro-drilled spots. In sample YJP-R9 (Fig. 4H), dolomitic matrix has δ^{13}C_{carb} and δ^{18}O_{carb} values around −0.6‰ and −4.9‰, respectively; on the contrary, micro-drilled powders from intraclastic phosphorites (with carbonate cements) reveal much more negative values of −10.6‰ and −7.7‰ for δ^{13}C_{carb} and δ^{18}O_{carb} compositions, respectively.

Similar to the Yangjiaping samples, phosphorite samples 12ZL-1.3 (Fig. 4G), 12ZL-4.5 (Fig. 4I), and 12ZL-0.9 (Fig. 4J) collected from the Zhongling section also show significant heterogeneity in δ^{13}C_{carb} compositions. Typically, calcite phases are remarkably depleted in ^{13}C compared with the phosphatic or dolomitic matrix. In the phosphorite sample YJP-R1 (Fig. 4K), δ^{13}C_{carb} value of the dolomitic matrix is +1.2‰, in contrast with strongly negative values measured from authigenic calcite nodules in all the phosphate samples.

Carbonate oxygen isotope compositions show a narrow range of variation. In general, δ^{18}O_{carb} values of calcite nodules are slightly lower than that of dolomitic matrix or cements in intraclastic phosphorite. Organic C isotope compositions of decalcified bulk powder measured from our samples range from −24.3‰ to −28.6‰. We
additionally measured the strontium isotope composition (87Sr/86Sr) of one authigenic calcite nodule in phosphorite sample (14ZL-1.3) collected in the uppermost Doushantuo Formation in Zhongling section and obtained a value of 0.7083 (Fig. 4G), which is notably consistent with the contemporaneous Ediacaran seawater values ranging from 0.7080 to 0.7090 (Melezhik et al., 2009; Sawaki et al., 2010; Cui et al., 2015; Xiao et al., in press).

6. Discussion

6.1. Authigenic origin for the 13C-depleted calcite

To form carbonates with 13C$_{carb}$ value less than -30°/oo, the precipitation fluids normally require a methane source either from biogenic methane through methanogenesis (e.g., Xu, 2010; Drake et al., 2015; Sela-Adler et al., 2015), or thermogenic methane from hydrothermal fluids (e.g., Bristow et al., 2011). In the case of the Doushantuo phosphorites, multiple lines of evidence suggest that the negative 13C$_{carb}$ compositions measured from calcite nodules in phosphorite samples are methane-derived authigenic phases formed during very early diagenesis, rather than a late hydrothermal origin. (1) 87Sr/86Sr of calcite nodules reveal typical Ediacaran seawater value around 0.7083 (Fig. 4H), suggesting authigenic calcite mineralization in shallow marine sediments that were in free exchange with ambient seawater, and were not influenced by hydrothermal fluids (cf. Bristow et al., 2011). The observation that authigenic carbonates record seawater Sr signals is typical of Modern marine sediments (e.g., Hovland et al., 1987; Aharon et al., 1997; Naehr et al., 2000; Greinert et al., 2001; Peckmann et al., 2001; Joseph et al., 2012). If the marine sediments are unconsolidated with free diffusion of Sr from seawater, authigenic carbonate nodules and cements would capture seawater Sr isotope compositions. (2) All authigenic calcites are preserved three-dimensionally as nodules inside the phosphorite host rock (Figs. 3, 4), and they are not directly associated with hydrothermal veins. (3) All the authigenic calcite nodules are surrounded by an authigenic silica or barite rim growing centripetally towards the calcite nodule (Fig. 3G–J), suggesting that the rim was formed before or simultaneously with the calcite during dissolution of preexisting sediments. Such texture could not be reconciled by the interpretation of a simple hydrothermal pulse. (4) CL images of authigenic calcite nodules show dim...
Based on Ce/Ce* data measured from carbonate and phosphorite samples prepared using dilute acid (0.4 M HNO3), it was proposed that the upper Zhongling and Yangjiaping sections recorded a redox transition from oxic to reducing environments (Cui et al., 2015). This interpretation is seemingly inconsistent with the abundance of intralasts and ooids in the phosphatic interval, which indicates an oxygenated shallow shelf depositional environment. This apparent discrepancy can be reconciled by a distinction between redox conditions in surface seawaters vs. bottom seawater or pore waters. Although the depositional environment in the water column was likely to be oxidized, the authigenic environment at the seafloor or in pore waters may be anoxic due to aerobic remineralization of abundant organic matter formed by water column photosynthesis. Multiple lines of evidence suggest that the upper Doushantuo Formation was deposited during a period with enhanced chemical weathering and enlarged sulfate pool (Fike et al., 2006; Kaufman et al., 2007; McFadden et al., 2008; Cui et al., 2015). It is likely that such conditions stimulated strong oceanic redox stratification and deep water anoxia (e.g., Jiang et al., 2007; Ador et al., 2009; Li et al., 2010, 2015; Och et al., 2016; Cui et al., in press; Sahoo et al., in press). In shallow-water environments, although the water column could be oxic, the authigenic environment in porewaters could be anoxic, which affected the Ce/Ce* ratios.

The interpretation of a basin-scale authigenesis pattern is also consistent with the overall trend of δ13Ccarb across the basin (Fig. 5). As authigenesis occurs, a considerable amount of organic matter may have been oxidized by sulfate via microbial sulfate reduction, forming δ13C-depleted authigenic carbonates would precipitate (Higgins et al., 2009; Schrag et al., 2013). Supporting evidence also comes from chemostatigraphic sulfur isotope profiles. Paired sulfur isotopes decrease progressively up section toward the upper Doushantuo Formation (Fig. 5), suggesting a continuing increase in the seawater sulfate reservoir in the Ediacaran ocean (McFadden et al., 2008), likely driven by the elevated oxidation of terrestrial pyrite associated with a middle Ediacaran atmospheric oxygenation event (Kaufman et al., 2007; Sheds-Whiz and Och, 2011; Liu et al., 2016). Although phosphorites are not found in the EN3 interval at the Jiulongwan section (see discussion in the next section), the close coupling between phosphate deposition and the upper Doushantuo δ13Ccarb negative excursion (Fig. 5) offers new insights into the origin of the Shuram Excursion: the Shuram Excursion may have resulted from enhanced δ13C-depleted authigenic carbonate mineralization fueled by pervasive microbial sulfate and iron reduction in the context of an atmospheric oxygenation event. Further investigations on other equivalent successions of the Shuram Excursion at a global scale are needed to test this hypothesis (e.g., Macdonald et al., 2013; Cui, 2015; Kaufman et al., 2015).

6.3. Biogeochemical model for Ediacaran phosphogenesis

It has been proposed that phosphate deposits in the Doushantuo Formation at different localities across the basin show a distinct redox- or depth-dependent distribution (Muscente et al., 2015). In South China, most of the phosphate deposits are preserved in shallow shelf environments, including the inner shelf Baokang, Zhangcunping, Xiaofenghe sections and outer shelf Zhongling, Yangjiaping, Weng'an sections. On the contrary, relatively deeper sections like the intra-shelf Jiulongwan, and slope sections at Siduping, Taoying and Minle lack significant phosphate deposits (Jiang et al., 2011; She et al., 2014) (Fig. 6A). It is likely that such a remarkable pattern is largely controlled by redox conditions in the water column (Fig. 6B, C).

In shallower inner or outer shelf regions, where oxic conditions dominate the water column (Fig. 6B), iron oxyhydroxide (FeO(OH)) efficiently absorbs dissolved phosphate derived from upwelled water masses or riverine input, and then transports the Fe-bound phosphorous

<table>
<thead>
<tr>
<th>Sample</th>
<th>Calcite nodules</th>
<th>Phosphorite or phosphatic dolostone matrix</th>
<th>Bulk acidified residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>YP-R5</td>
<td>−15.0</td>
<td>−8.4</td>
<td>−1.0</td>
</tr>
<tr>
<td>(Yangjiaping)</td>
<td></td>
<td></td>
<td>−5.6</td>
</tr>
<tr>
<td></td>
<td>−19.1</td>
<td>−8.4</td>
<td>−10.6</td>
</tr>
<tr>
<td></td>
<td>−16.6</td>
<td>−8.9</td>
<td>−20.1</td>
</tr>
<tr>
<td></td>
<td>−20.1</td>
<td>−8.6</td>
<td>−34.0</td>
</tr>
<tr>
<td>YP-R4</td>
<td></td>
<td></td>
<td>−9.1</td>
</tr>
<tr>
<td>(Yangjiaping)</td>
<td></td>
<td></td>
<td>−27.4</td>
</tr>
<tr>
<td>YP-R10–2</td>
<td>−17.7</td>
<td>−9.5</td>
<td>−0.8</td>
</tr>
<tr>
<td>(Yangjiaping)</td>
<td></td>
<td></td>
<td>−4.1</td>
</tr>
<tr>
<td></td>
<td>−17.0</td>
<td>−9.1</td>
<td>−26.6</td>
</tr>
<tr>
<td></td>
<td>−5.8</td>
<td>−6.7</td>
<td>−23.5</td>
</tr>
<tr>
<td></td>
<td>−23.5</td>
<td>−9.2</td>
<td>−13.1</td>
</tr>
<tr>
<td></td>
<td>−13.1</td>
<td>−9.2</td>
<td>−10.6</td>
</tr>
<tr>
<td></td>
<td>−10.6</td>
<td>−7.7</td>
<td>−0.6</td>
</tr>
<tr>
<td>YP-R9</td>
<td></td>
<td></td>
<td>−4.9</td>
</tr>
<tr>
<td>(Yangjiaping)</td>
<td></td>
<td></td>
<td>−27.9</td>
</tr>
<tr>
<td>YP-R1</td>
<td></td>
<td></td>
<td>−0.7</td>
</tr>
<tr>
<td>(Yangjiaping)</td>
<td></td>
<td></td>
<td>−4.9</td>
</tr>
<tr>
<td>12Z–4.5</td>
<td>−19.5</td>
<td>−7.8</td>
<td>+1.2</td>
</tr>
<tr>
<td>(Zhongling)</td>
<td></td>
<td></td>
<td>−3.3</td>
</tr>
<tr>
<td></td>
<td>−20.0</td>
<td>−8.6</td>
<td>+2.7</td>
</tr>
<tr>
<td></td>
<td>−25.2</td>
<td>−8.2</td>
<td>−7.2</td>
</tr>
<tr>
<td></td>
<td>−11.7</td>
<td>−8.1</td>
<td>−1.5</td>
</tr>
<tr>
<td>12Z–0.9</td>
<td></td>
<td></td>
<td>−5.7</td>
</tr>
<tr>
<td>(Zhongling)</td>
<td></td>
<td></td>
<td>−27.5</td>
</tr>
<tr>
<td></td>
<td>−12.1</td>
<td>−7.4</td>
<td>−1.1</td>
</tr>
<tr>
<td></td>
<td>−16.5</td>
<td>−5.9</td>
<td>−1.9</td>
</tr>
<tr>
<td></td>
<td>−10.2</td>
<td>−7.8</td>
<td>−4.5</td>
</tr>
</tbody>
</table>
Fig. 5. Integrated litho-, bio-, and chemo-stratigraphy of representative sections of the Doushantuo Formation with phosphorite deposits. The Jiulongwan section, though lacking phosphorite, has also been presented for intra-basinal chemostratigraphic correlation. Lithology columns and fossil assemblages are modified after Jiang et al. (2011) and Muscente et al. (2015). Source of carbon and sulfur isotope data: Xiaofenghe section (Xiao et al., 2012; Zhu et al., 2013), Jiulongwan section (Jiang et al., 2007; McFadden et al., 2008), Zhongling section (Li et al., 2010; Cui et al., 2015), Yangjiaping section (Cui et al., 2015), Weng’an section (Shields et al., 2004; Jiang et al., 2008). Note that $\delta^{34}S_{\text{sulfate}}$ data of the Xiaofenghe, Jiulongwan, Zhongling sections are measured from extracted carbonate-associated sulfate (CAS), and $\delta^{34}S_{\text{sulfate}}$ data of the Weng’an section are measured from francoelite-bound sulphate. Intervals of phosphorite are marked in blue color in the stratocolumn. Ediacaran negative (EN) $\delta^{13}C_{\text{carb}}$ excursions as recorded at the Jiulongwan section are marked as EN1, EN2, and EN3 (McFadden et al., 2008). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(FeOOH·PO₄) into marine sediments (Berner, 1973; Shaffer, 1986; Feely et al., 1991, 1998; Poulton and Canfield, 2006). This "Fe–P shuttle" functions as the main mechanism of phosphorous burial (Glenn et al., 1994; Shen et al., 2000). On the contrary, in euxinic environments where free sulfide is present in the water column (Fig. 6C), iron oxyhydroxides would react with sulfide, forming ferrous iron and elemental sulfur. The scavenging of iron oxyhydroxide by free sulfide shuts down the "Fe–P shuttle", thus dissolved phosphorous is not incorporated into the sediments (März et al., 2008). This model could possibly explain the lack of phosphorite deposits in anoxic or euxinic environments (e.g., the intra-shelf Jiulongwan section and deeper slope/basinal sections) in South China. Anoxic (including euxinic) conditions in bottom water masses, or in a restricted basin, would thus promote the accumulation of dissolved phosphorus near the redox interface, which could be transported into shallow oxidizing environments as a source for phosphorites during upwelling events (Nelson et al., 2010; She et al., 2013, 2014).

Once the absorbed Fe-bound phosphorous (FeOOH·PO₄) is transported into the marine sediments, phosphorous is concentrated in the pore water to promote phosphate mineralization (Glenn and Arthur, 1990; Kim et al., 1999). Considering that microbial sulfate reduction is the dominant process in organic C degradation in modern marine sediments (Jørgensen, 1982; Thamdrup and Canfield, 1996; Jørgensen and Kasten, 2006), it is likely to be an important process driving phosphorite formation in the Doushantuo Formation. In light of the abundance of ¹³C-depleted authigenic carbonate and authigenic calcite, barite, and pyrite in association with Doushantuo phosphorite, microbial sulfate reduction (MSR) likely played an important role in the deposition of Doushantuo phosphorite. Assuming that the phosphatic intraclasts in the Doushantuo Formation were reworked over a short distance soon after their lithification, it is possible that MSR may have facilitated phosphogenesis by concentrating phosphorous in pore waters. During microbial sulfate and iron reduction, phosphorous is released from FeOOH·PO₄ or organic matter, the concentration of pore water phosphate is raised above the supersaturation levels, and amorphous phosphate would precipitate (Filippelli, 2001, 2008).

Another line of evidence that supports our view is the abundance of disseminated authigenic pyrite in the studied Doushantuo phosphorite samples (Fig. 2G-L). Enhanced phosphate release into pore water normally occurs in the presence of sulfate, which fuels sulfate reduction, and, as a result, authigenic sulfide minerals would form in the sediments (Rodén and Edmonds, 1997; Konhauser et al., 2011a, 2011b). Consistent with what we observed at Yangjiaping and Zhongling, abundant authigenic pyrite is also present in Doushantuo phosphorites at Weng’an (Dornbos et al., 2006), Zhongling (Jiang et al., 2011), Yangjiaping (Cui et al., 2015), and North Xiaofenghe (Xiao et al., 2012), suggesting that

Fig. 6. Biogeochemical model of Ediacaran phosphogenesis in continental margins of South China. (A) Simplified basin-scale depositional reconstruction of the Doushantuo Formation (Jiang et al., 2011; Xiao et al., 2012; Cui et al., 2015; Muscente et al., 2015), showing locations of stratigraphic sections mentioned in the text and sources of phosphorus, sulfate, and radiogenic strontium. (B) Geomicrobial processes responsible for phosphogenesis in an oxic/suboxic oceanic environment (e.g., inner shelf sections at Baokang, Zhangcunping, and Xiaofenghe; outer shelf sections at Zhongling, Yangjiaping, and Weng’an). (C) Geomicrobial processes in a euxinic oceanic environment (e.g., intra-shelf section at Jiulongwan and slope section at Siduping, Taoying, and Minle). Modified after Glenn et al. (1994) and Muscente et al. (2015). CFA = carbonate fluorapatite; MSR = microbial sulfate reduction; AOM = anaerobic oxidation of methane; MFeR = Microbial iron reduction; SMTZ = sulfate–methane transition zone. See the main text for detailed discussion.
reactive iron and hydrogen sulfide were available in the pore waters, mostly likely derived from microbial sulfate reduction. Although some pyrite grains might have been recrystallized to form larger crystals during later burial, the widespread distribution and high abundance of pyrite in Doushantuo phosphorites supports the view that microbial sulfate reduction played an important role in phosphogenesis.

It should be noted that the phosphorite rocks in the uppermost Doushantuo Formation are mostly intraclastic in texture (Figs. 2, 3). This suggests the occurrence of sediment reworking before final deposition (e.g., She et al., 2013, 2014; Cui et al., 2015; Álvaro et al., 2016). Thus, the 13C-depleted authigenic calcite only records authigenic history after the final deposition of phosphatic intraclasts. However, because of the consistent stratigraphic and environmental distribution of the upper Doushantuo phosphorite, it is likely that the intraclasts were phosphitized early and soon transported to where they were cemented. Thus, the close coupling between phosphorite and isotopically-distinct authigenic minerals and phosphorites still offers useful insights on the carbon, phosphorite cycling and phosphorite formation during the Ediacaran Period. Taken together, microbially mediated sulfate reduction, the degradation of organic matter, methanogenesis, anaerobic oxidation of methane, and Fe recycling during early diagenesis may have played an important role in concentrating phosphorus within pore water, facilitating phosphorite precipitation in the Ediacaran Period (Fig. 6).

6.4. Phosphorous cycling and the Neoproterozoic Oxygenation Event

Phosphorous has been argued to be a critical factor to maintain the widespread ferruginous condition in the ocean before the Ediacaran Period (Bjerrum and Canfield, 2002; Poulton and Canfield, 2011). It has been suggested that low phosphorous availability may have significantly reduced the rates of photosynthesis and organic carbon burial, thereby resulting in a long-term delay in the rise of atmospheric oxygen rise during the late Archaean and early Proterozoic (Bjerrum and Canfield, 2002).

In contrast to the general absence of phosphorites in early Earth’s history, widespread phosphogenesis during the Ediacaran Period stands out, and is likely coupled with profound changes in atmospheric oxygenation, as well as the evolution of seawater redox conditions (Cook and Shergold, 1984; Brasier, 1992; Cook, 1992; Papineau, 2010; Planavsky et al., 2010). Coincident with the Ediacaran phosphogenic event, an increase of seawater 87Sr/86Sr during the late Ediacaran suggests enhanced chemical weathering and terrestrial input of sulfate into the middle Ediacaran ocean (Kaufman et al., 1993; Halverson et al., 2007; Cui et al., 2015). Such enhancement in chemical weathering is probably a result of active tectonic uplift during Pan-African assembly (Kaufman et al., 1993; Li, 2011; Li et al., 2013). Consistent with enhanced chemical weathering, an increased flux of phosphorous into the Ediacaran ocean may have promoted primary productivity and organic carbon burial, causing a net increase of atmospheric O_2 (Campbell and Allen, 2008; Campbell and Squire, 2010; Planavsky et al., 2010) (Fig. 7). Enhanced primary productivity may also increase the oxygen consumption in the water columns, which would drive the expansion of the oxygen minimum zone (OMZ) and potentially cause an ocean anoxia event (Cui et al., in press; Sahoo et al., in press).

Perturbations in ocean redox conditions are believed to have a significant impact on marine phosphorous cycling. A comprehensive investigation (Colman and Holland, 2000) on the diffusive return flux of phosphate from marine sediments beneath both oxic and anoxic water columns reveals a strong coupling between the redox state of marine sediments and the return flux of phosphate to seawater. The flux of phosphate in highly reduced sediments is significantly higher than that from highly oxidized sediments. If correct, this suggests that the marine phosphate cycle is critically linked to oceanic redox conditions and the stabilization of atmospheric oxygen.

During ocean anoxia, more dissolved phosphorous derived from organic C degradation would be recycled into the shallow ocean through upwelling, and stimulate greater primary productivity, which would further cause an even stronger biological pump, developing a positive feedback loop of “primary productivity → ocean anoxia → phosphorous recycling → more primary productivity → more ocean anoxia” (Van Cappellen and Ingall, 1994, 1996; Mort et al., 2007) (Fig. 7). However, this positive feedback could also operate in the opposite direction. When larger and more complex eukaryotic particles emerged and sank more rapidly through the water column, oxygen demand could shift away from the surface, leading to the expansion of mid-depth oxygenation, enhanced removal of phosphorus, a reduce in primary productivity and oxygen demand, and further expansion of oxygenation (Butterfield, 2009, 2011; Lenton et al., 2014; Butterfield, 2015).

Alternatively, a negative feedback on carbon and phosphorous cycling may have played a role on stabilizing the oxygen concentrations in the Early Cambrian (Boyle et al., 2014). As bioturbation evolved, the retention of phosphorous (relative to carbon) within organic matter in

![Fig. 7. Biogeochemical feedbacks of carbon, sulfur and phosphorous cycling during the Ediacaran Period. See the main text for detailed discussion.](image-url)
References

