Environmental context for the terminal Ediacaran biomineralization of animals
Cui, Huan; Kaufman, Alan; Xiao, Shuhai; Peek, Sara; Cao, Hansheng; Min, Xiao; Cai, Yaoping; Siegel, Zak; Liu, Xiao-Ming; Peng, Yongbo; Schiffbauer, James; Martin, Aaron

Published in:
Geobiology

DOI:
10.1111/gbi.12178

Publication date:
2016

Document Version:
Final published version

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 03. Jan. 2020
Environmental context for the terminal Ediacaran biomineralization of animals

H. CUI,1,2 A. J. KAUFMAN,1,3 S. XIAO,4 S. PEEK,1,* H. CAO,1,† X. MIN,5 Y. CAI,5 Z. SIEGEL,6 X.-M. LIU,7 Y. PENG,8 J. D. SCHIFFBAUER9 AND A. J. MARTIN10

1Department of Geology, University of Maryland, College Park, MD, USA
2Department of Geoscience and NASA Astrobiology Institute, University of Wisconsin-Madison, Madison, WI, USA
3Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
4Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
5Department of Geology, Northwest University, Xi’an, China
6Bethesda-Chevy Chase High School, Bethesda, MD, USA
7Department of Geological Sciences, University of North Carolina, Chapel Hill, NC, USA
8Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA
9Department of Geological Sciences, University of Missouri, Columbia, MO, USA
10División de Geociencias Aplicadas, IPICYT, San Luis Potosí, Mexico

ABSTRACT

In terminal Ediacaran strata of South China, the onset of calcareous biomineralization is preserved in the paleontological transition from Conotubus to Cloudina in repetitious limestone facies of the Dengying Formation. Both fossils have similar size, funnel-in-funnel construction, and epibenthic lifestyle, but Cloudina is biomineralized, whereas Conotubus is not. To provide environmental context for this evolutionary milestone, we conducted a high-resolution elemental and stable isotope study of the richly fossiliferous Gaojiashan Member. Coincident with the first appearance of Cloudina is a significant positive carbonate carbon isotope excursion (up to +6‰) and an increase in the abundance and 34S composition of pyrite. In contrast, δ34S values of carbonate-associated sulfate remain steady throughout the succession, resulting in anomalously large (>70‰) sulfur isotope fractionations in the lower half of the member. The fractionation trend likely relates to changes in microbial communities, with sulfur disproportionation involved in the lower interval, whereas microbial sulfate reduction was the principal metabolic pathway in the upper. We speculate that the coupled paleontological and biogeochemical anomalies may have coincided with an increase in terrestrial weathering fluxes of sulfate, alkalinity, and nutrients to the depositional basin, which stimulated primary productivity, the spread of an oxygen minimum zone, and the development of euxinic conditions in subtidal and basinal environments. Enhanced production and burial of organic matter is thus directly connected to the carbon isotope anomaly, and likely promoted pyritization as the main taphonomic pathway for Conotubus and other soft-bodied Ediacara biotas. Our studies suggest that the Ediacaran confluence of ecological pressures from predation and environmental pressures from an increase in seawater alkalinity set the stage for an unprecedented geobiological response: the evolutionary novelty of animal biomineralization.

Received 02 October 2015; accepted 19 January 2016

Corresponding author: H. Cui. Tel.: +1 240 281 1865; fax: +1 608 262 0693; e-mail: Huan.Cui@wisc.edu

*Present address: United States Geological Survey, Menlo Park, CA 94025, USA
†Present address: College of Earth Sciences, Jilin University, Changchun 130061, China

INTRODUCTION

One of the earliest animals to have developed a biomineralized carbonate exoskeleton is Cloudina—named after the famed Precambrian paleontologist Preston Cloud (1912–1991) and preserved in terminal Ediacaran (ca. 550–541 Ma) sedimentary successions worldwide (Conway Morris et al., 1990; Sour-Tovar et al., 2007;
Gaucher & Germs, 2009; Cortijo et al., 2010; Zhuravlev et al., 2012). This animal, which is suggested to be an ancient cnidarian-grade (Grant, 1992; Cortijo et al., 2010) or lophotrochozoan animal (Hua et al., 2005; Zhuravlev et al., 2015), constructed a high-Mg calcitic tubular shell with nested funnels, had an epibenthic lifestyle with its apex attached to the substrate (Grant, 1990; Zhuravlev et al., 2012; Cai et al., 2014), and may have had both sexual and asexual reproductive strategies to aid in its broad ecological dispersal (Cortijo et al., 2015). Cloudina was associated with microbial reefs and may have been a reef builder like modern-day corals that inhabit oligotrophic shelf environments where they band together in search of hard substrates and for protection against predators (Penny et al., 2014; Wood & Curtis, 2015).

Biominerals of Cloudina is widely considered to have been a response to predation given the significant number of borings found on its fossil shells (Bengtson & Zhao, 1992; Hua et al., 2003; Porter, 2011). In addition, some also have considered terminal Ediacaran biomineralsization as a (toxico-)physiological response to regulate calcium concentrations in circulatory fluids (Simkiss, 1977, 1989; Kempe et al., 1989; Brennan et al., 2004), or to environmental perturbations involving oscillations in atmospheric pCO₂ and seawater chemistry (Knoll, 2003a; Knoll & Fischer, 2011). Environmental drivers, however, are particularly difficult to assess insofar as these should also have a broad effect on general biotic diversification and vice versa (Knoll, 2003b; Gaidos et al., 2007; Butterfield, 2009, 2011; Lenton et al., 2014; Erwin, 2015). Insofar as there is a metabolic cost to biomineralsization, the biological benefits to the organisms, including protection against predation and the physiological response of organisms to rapidly changing seawater chemistry in the terminal Ediacaran Period, should be balanced (Knoll, 2003a; Xiao, 2014).

To this end, we investigated a Lagerstätte of Ediacaran animals in the Gaojiashan Member of the Dengying Formation in South China (Fig. 1) (Hua et al., 2007; Cai et al., 2010). Within the member’s repetitious limestone facies, the first appearance of Cloudina is immediately preceded by Conotubus, a soft-bodied antecedent exquisitely preserved through pyritization with similar construction, size, and lifestyle (Cai et al., 2014). To explore this unique paleontological juxtaposition and provide environmental context for the earliest examples of animal biomineralsization and pyritization, we sampled the Gaojiashan Member at high stratigraphic resolution for elemental and isotopic compositions. Our chemostratigraphic investigation reveals that these evolutionary and taphonomic events are associated with profound biogeochemical shifts in both the carbon and sulfur cycles, and speculate that they may have been facilitated by profound environmental perturbations in the marine realm ultimately driven by enhanced oxidative weathering of the continents.

STRATIGRAPHIC AND GEOCHRONOLOGICAL CONSTRAINTS

Carbonates of the Dengying platform are sandwiched between the Ediacaran Doushantuo Formation (ca. 635–551 Ma) (Jiang et al., 2011) and the early Cambrian Kuanchuanpu Formation (Steiner et al., 2004) in the southern Shaanxi region (Fig. 1). The Dengying Formation at Gaojiashan is subdivided into three intervals, including the Algal Dolomite, Gaojiashan, and Beiwan members (Fig. 1C), which are generally correlated with Hamajing, Shibantan, and Baimatuo members, respectively, in the Yangtze Gorges area (Zhou & Xiao, 2007; Zhu et al., 2007; Zhu et al., 2007; Duda et al., 2015). Based on the 551 Ma U–Pb zircon depositional age of a volcanic ash at the top of the Miaohe Member, which has historically been correlated with Doushantuo Member IV (Condon et al., 2005), and an estimated 541 Ma age for the Ediacaran–Cambrian boundary (Amthor et al., 2003; Chen et al., 2015), the >650 m thick Dengying Formation represents the last 10 million years of the Ediacaran Period. However, a recent chemostratigraphic study of the Miaohe Member (An et al., 2015) demonstrates that the 551 Ma ash bed lies between the Hamajing and Shibantan members of the Dengying Formation and is thus not relevant to the biogeochemical anomaly (i.e., Shuram excursion) preserved in the upper Doushantuo Formation (cf. Kaufman, 2005).

At the studied section, the Gaojiashan Member is 55 m in thickness, including a silstone interval in the lower part, repetitious silstone–mudstone–limestone facies with cryptalgal crinkly laminations in the middle part, and a coarse sandstone/conglomerate at the top (Fig. 2) (Cai et al., 2010). The lower Gaojiashan Member contains the enigmatic fossil Shaanxilithes ningqiangensis preserved in silstone facies (Meyer et al., 2012). The middle Gaojiashan Member contains Conotubus hemiannulatus and Gaojiashania cyclus preserved in thin, normally graded calcisiltite–siltstone beds interpreted as distal event deposits (Cai et al., 2010), followed by the first appearance of the biomineralized animal Cloudina preserved in intraclastic limestones approximately 40 m above the base of the succession (Fig. 1). A distinctive horizon with bedded gypsum occurs in the upper part of the Gaojiashan Member (Figs 1D, 2F,G).

METHODS

In this study, the Gaojiashan Member was systematically sampled at high resolution for integrated chemostratigraphic and geochronological investigations. Geochemical analyses were conducted in the Paleoclimate CoLaboratory at University of Maryland. Details of the methods used in the CoLaboratory can be found in previous publications (e.g., McFadden et al., 2008; Zhelezinskaia et al., 2014; Cui et al., 2015), but are briefly outlined below.
Carbon and oxygen isotope analysis

Rock samples were cut and polished for detailed petrographic observation and micro-drilling to obtain powders from the least-altered, least-recrystallized, and purest phases for carbonate carbon ($\delta^{13}C_{\text{carb}}$) and oxygen ($\delta^{18}O_{\text{carb}}$) isotope analysis. The powders were measured with a Multicarb inlet device in-line with an Elementar Isoprime continuous-flow isotope ratio mass spectrometer, and precision for both isotopes was routinely better than 0.1‰.

Elemental analyses

Major and trace elemental abundances in carbonates were analyzed to better evaluate the degree of diagenetic alteration. Aliquots of the micro-drilled carbonate powders were dissolved in 0.4 M HNO$_3$ and centrifuged. The purified solutions were isolated prior to analysis. Petrographic observations indicate that these powders were largely free of siliciclastics; any clays, if present, would not have been dissolved by the dilute acid. The resulting solutions were analyzed on a Thermo Scientific iCAP-Q ICP-MS (Inductively Coupled Plasma—Mass Spectrometry) at the Carnegie Institution of Washington. Precision of these analyses as determined by repeated measurements of a house standard carbonate was <5% (2σ) for major elements with high concentrations and <10% (2σ) for the REEs.

Organic carbon and paired sulfur isotope analyses

The organic carbon ($\delta^{13}C_{\text{org}}$), total sulfur ($\delta^{34}S_{\text{TS}}$) of pyrite and trace amount of organic S) isotope compositions were measured by combustion of the decalcified residuals to CO$_2$ or SO$_2$ with a Eurovector elemental analyzer in-line with a second Elementar Isoprime isotope ratio mass spectrometer. Bulk carbonate powders were used for extraction.
of carbonate-associated sulfate (CAS). For the former,
~15 g of bulk crushed sample was acidified with 3 M HCl. These acidified residues were washed with ultra-pure Milli-Q (18 MΩ) water, centrifuged, decanted, and dried. For the latter, ~100 g of crushed bulk sample were repeatedly leached with 10% NaCl solutions. To minimize the contamination of soluble non-CAS sulfate (Marenco et al., 2015), bulk powders were leached with 10% NaCl solutions for at least 10 times (~2 h each), and then washed with Milli-Q water for at least three times prior to acidification of the leached powders with 3 M HCl. CAS precipitates were then collected as BaSO 4 three days after BaCl 2 was added to the solution. The acidified residues and the BaSO 4 precipitates were packed into folded tin cups with V 2O 5 for total sulfur and CAS sulfur isotope analysis, respectively. Uncertainties for carbon and sulfur isotope measurements determined by multiple analyses of standard materials during analytical sessions are better than 0.1% and 0.3‰, respectively.

Detrital zircon dating

For all aspects of zircon dating, we followed the procedures described in Martin et al. (2015). Zircon grains were isolated using conventional mineral separation techniques including rock pulverization by hand using a mortar and pestle, removal of silt and clay by hand panning in water, removal of magnetic grains using a Frantz magnetic barrier separator, and density separation using methylene iodide. Zircon grains were then poured onto double-sided tape and cast in an epoxy disk along with approximately 10 shards of the Sri Lanka zircon standard (564 ± 3 Ma) (Gehrels et al., 2008). After hand polishing to expose the interiors of the grains, we produced backscattered electron and cathodoluminescence images using the JEOL JXA-8900R electron probe microanalyzer at the University of Maryland.

The cores of 49 and 175 zircon grains were dated from samples 09G-35.3 and 09G-37.9, respectively, by laser ablation-inductively coupled plasma-mass spectrometry in the Arizona LaserChron Center at the University of Arizona, taking care to avoid multiple cathodoluminescence zones, inclusions, and cracks. Ablation of the zircon was performed using a New Wave UP193HE Excimer laser and a spot diameter of 30 μm. The ablated zircon was carried in helium into the plasma source of a Nu Plasma HR multicollector mass spectrometer, and analyses followed the protocols described in Martin et al. (2015).

Corrections for interelement fractionation of Pb/U and common Pb, as well as other data reduction, were performed off-line using an Excel program developed at the Arizona LaserChron Center. We removed from further consideration analyses with: (i) high 206Pb, (ii) greater than 5% error on the 206Pb/207Pb date, (iii) greater than 5% error on the 206Pb/238U date, (iv) greater than 25% normal discordance or 8% reverse discordance, (v) high U concentration, or (vi) high U/Th ratio. The remaining analyses were used in our interpretations (Table S1; Fig. 3). Isoplot was used to calculate weighted means and to produce concordia and probability density plots (Ludwig, 2008).

206Pb/238U dates are usually more precise than 206Pb/207Pb dates for zircon younger than about 1.4 Ga, whereas the reverse is true for older grains. However, 206Pb/207Pb dates are only minimally affected by recent lead loss, so in most cases, they more closely indicate the time of crystallization for zircon older than about 1 Ga. Therefore, during interpretation, we used 206Pb/238U dates for grains younger than 1 Ga and 206Pb/207Pb dates for older zircon grains.

RESULTS

Detrital zircon from two closely spaced siltstone beds at 16.7 m (sample 09G-35.3) and 14.1 m (sample 09G-37.9) above the base of the Gaojiashan member yielded a youngest population of four U-Pb ages ranging from 543 to 550 Ma from sample 09G-37.9, with a weighted mean age of 548 ± 8 Ma (MSWD = 0.11) (Fig. 3, Table S1). This maximum depositional age based on detrital zircon measurements is consistent with the 551 Ma age estimate for the Miaohe Member beneath the Gaojiashan-equivalent Shibantan Member of the Dengying Formation based on U-Pb zircon age from the bedded ash layer (Amthor et al., 2003; Condon et al., 2005; Chen et al., 2015). However, most of the detrital zircons in this study had ages between 750 and 850 Ma, with a scattering of solitary dates spanning from 1300 to 2700 Ma.

In total, 113 limestone and calcareous siltstone samples from the Gaojiashan Member were analyzed for elemental abundances and isotopic compositions (Figs 4–5; Tables S2–S4). Carbonate percentages in the samples are generally high (>90%), except in the lower member where limestones and siltstones are interbedded. The stratigraphic trend of δ13Ccarb, variations reveals a positive carbon isotope excursion (up to +6‰ in) in the upper part of the Gaojiashan Member, coinciding with the fossil transition from Conotubus to Cloudina. Coupled with the positive δ13Ccarb event, δ13Corg data reveal a negative excursion (down to −30‰) in this interval. Pyrite S isotope (δ34S) values measured from bulk acidified residues (assuming pyrite S ≫ organic S) show a wide range from −30‰ to +30‰ in the Gaojiashan Member, with more negative values in the lower half of the section, and more positive values in the upper half. On the contrary, sulfur isotope compositions of carbonate-associated sulfate (δ34S) remain

© 2016 John Wiley & Sons Ltd
generally invariant around ca. +40‰ throughout the Gaojiashan Member. Both total sulfur (TS) and total organic carbon (TOC) are relatively low through most of the succession, but are elevated in the cloudinid interval. Mg/Ca ratios show the dominance of limestone in the Gaojiashan Member, with higher Mg/Ca, Mn/Sr, and Rb/Sr ratios found only in dolostones interbedded with siltstones in the lower Gaojiashan Member. Sr/Ca ratios reveal a positive excursion in the upper section, mimicking the δ13C_{carb} anomaly, whereas Ce/Ce* ratios through the section remain constant at values near to 0.5, with the exception of two samples at the top of the Gaojiashan Member with higher values.

DISCUSSION

Diagenesis

Confidence in our ability to interpret environmental changes associated with the paleontological transitions in the Gaojiashan requires that we evaluate the degree of alteration of the limestone samples. Based on the low
Mn/Sr and Rh/Sr, and the smooth temporal trends in other geochemical indicators defined by high-resolution sampling, the limestones appear to be especially well preserved (Fig. 4). However, insofar as carbonates are susceptible to isotopic exchange with meteoric or hydrothermal fluids after burial, stable isotope compositions of carbonate phases might reflect diagenetic overprints over depositional signatures. For example, the lithification of marine carbonates associated with the flushing of meteoric fluids could cause coupled depletions in both 13C and 18O, assuming the alkalinity was sourced from soil respiration (Knauth & Kennedy, 2009). Isotopic coupling in carbonates might also result from burial diagenesis (Derry, 2010; Bristow et al., 2011) assuming hot fluid temperatures and alkalinity formed through anaerobic processes. In either case, the carbonates would be predictably recrystallized or contain appreciable amounts of neomorphic calcite. These petrographic features are not observed in the fine-grained Gaojiashan limestones, which reveal a significant positive δ^{13}C$_{carb}$ excursion, whereas δ^{18}O$_{carb}$ values remain steady. A cross-plot of the carbon and oxygen isotope abundances in these samples reveals no positive correlation (Fig. 5, lower panel). Insofar as oxygen isotopes would be more likely to be altered during water-rock interactions (Jacobson & Kaufman, 1999), the δ^{13}C$_{carb}$ excursion recorded in the Gaojiashan Member is likely to reflect true secular changes in seawater composition.

The degree of carbonate preservation may also be evaluated through the analyses of CAS abundances and sulfur isotope compositions. Published studies have shown that CAS in marine carbonates may be affected by secondary processes related to pyrite oxidation (Marenco et al., 2008), which could occur in the outcrop or in the laboratory, or the addition of secondary atmospheric sulfate (SAS) to carbonates exposed in desert environments (Peng et al., 2014). On the other hand, CAS studies of modern carbonate sediments where there was active pore-water sulfate reduction indicate minimal alteration of bulk carbonate
sulfur isotope compositions (Lyons et al., 2004). While Gaojiashan CAS abundances are generally low (ranging from near 0 to 150 ppm), their $\delta^{34}S_{\text{CAS}}$ values are invariant at ca. $+40_{\text{perm}} \%$ throughout the succession (Fig. 5F,G), suggesting excellent preservation of primary signals (Gill et al., 2008). The sulfur isotope invariance, which is notably consistent with $\delta^{34}S_{\text{sulfate}}$ analyses of bedded anhydrites (ca. $+40_{\text{perm}} \%$) in equivalent terminal Ediacaran strata from Oman (Fike & Grotzinger, 2008), supports the view that the Gaojiashan carbonates are exceptionally well preserved and likely reflective of global seawater conditions.

To further evaluate diagenesis in the Gaojiashan Member samples, we compared abundances of TOC and pyrite against each other, as well as with their carbon and sulfur isotope compositions, respectively. In neither case do we see a systematic relationship (Fig. 5 lower panel), although there are two samples with the highest TOC do have the lowest $\delta^{13}C$ signatures. TOC might change by either microbial (Borowski et al., 1996, 2013; Jorgensen et al., 2004; Ries et al., 2009) or thermochemical (Cai et al., 2001, 2003, 2004) sulfate reduction after deposition, which could result in progressive 34S-enrichment of product sulfide preserved as pyrite. However, the sedimentary rocks have not been buried deeply enough to drive the thermal reactions. Furthermore, we find no systematic relationship in TOC–TS or TOC–δ^{34}S cross-plots, suggesting that these secondary processes did not significantly impact the Gaojiashan samples.

Redox constraints for the Gaojiashan Member

Multiple lines of evidence suggest that the paleontological transition in the middle Gaojiashan Member is accompanied by strong ocean stratification (Figs 5 and 6). Support for this interpretation comes from the negative excursion in the 13C abundance of TOC – which mirrors the positive $\delta^{13}C_{\text{carb}}$ excursion – resulting in the greatest magnitude of $\Delta\delta^{13}C$ values in the Cloudina interval (Fig. 5A–C). In light of the abundance of microbial fabrics in both the Gaojiashan Member (Cai et al., 2010) and the Nama Group (Bouougri & Porada, 2007), these decoupled chemostratigraphic carbon isotope trends could plausibly have resulted from organic matter derived from benthic microbial mats where anaerobic chemoautotrophs utilized locally recycled 13C-depleted DIC to form biomass with lower $\delta^{13}C_{\text{org}}$ values (Des Marais, 1990; Hayes, 1993; Falkowski et al., 2008; Houghton et al., 2014). Alternatively, there may have been an enhanced flux of organic matter derived from anoxygenic photoautotrophs such as green and purple sulfur bacteria that utilize H_2S as a source of electrons during photosynthesis (Johnston et al., 2009). These photoautotrophs typically exist along redox
chemoclines and utilize respired CO₂, which is typically depleted in 13C relative to its atmospheric equivalent (e.g., Brooks et al., 2005). In either case, the spread of anoxic/euxinic conditions across the platform would have promoted organic matter burial (Hayes et al., 1983) and the positive δ13Cexcursion. High abundances of organic S compounds, indicative of euxinic conditions, are also revealed by biomarker studies of the Gaojiashan-equivalent Shibantan Member (Duda et al., 2014). Further evidence for the spread of anoxia associated with the decoupled δ13C excursions is found in the profoundly negative δ238U signatures of Gaojiashan limestones (Zhang et al., 2015), and our sulfur isotope measurements.

Chemostratigraphic analyses of the Gaojiashan Member reveal a profound rise in δ34Spyrite values from as low as −20‰ to values reaching positive δ13Corg between 35 and 40 m before falling rapidly to values averaging around +10‰ in the Cloudina-bearing beds (Fig. 5G). In contrast, the δ34S of CAS remain steady at values of ca. +40‰ throughout the Gaojiashan Member. The calculated sulfur isotope contrasts (Δδ34S) range widely in the lower half of the succession, with a maximal value of 38‰, but in the upper half Δδ34S is relatively constant at ca. 30–35‰ (Fig. 5H). Interpreting the environmental significance of these remarkable stratigraphic variations requires the recognition that the δ34SCAS and δ34Spyrite signatures are inherited from different parts of the depositional basin. Sulfate incorporation into primary carbonate sediments would occur within the water column, whereas pyrite would form either in euxinic bottom waters or within sediments. Considering this spatial separation, local sulfate availability could dictate the δ34S isotopic difference between CAS and pyrite, particularly if pyrite is formed in non-bioturbated and microbially sealed sediments where the water–sediment interface represents a significant diffusion barrier (Bottjer et al., 2000; Bouougri & Porada, 2007; Fike et al., 2008, 2009). While such a scenario might apply to discrete intervals within the Gaojiashan—including the Staurolithes and Conotubus zones (Fig. 5H)—other parts of the succession have measured Δδ34S differences that are significantly larger. Furthermore, the constancy of the δ34SCAS values through the Gaojiashan suggests that the perturbation in the terminal Ediacaran sulfur cycle did not involve changes in the marine
sulfate isotopic composition. Thus, the ~60/84 shift in δ34S of pyrite from the lower to the upper Gaojiashan Member may require a change in biologically induced fractionations involving both the reductive and oxidative paths of the sulfur cycle (i.e., bacterial S disproportionation, or BSD) (Canfield & Thamdrup, 1994), or microbial sulfate reduction (MSR) with very low sulfate reduction rates (SRR) (Canfield et al., 2010; Leavitt et al., 2013; Wu & Farquhar, 2013; Wing & Halevy, 2014).

In the case of BSD, sulfur is recycled via both reductive and oxidative pathways. On the reductive side, the magnitude of kinetic sulfur isotope fractionation (εSR) has been observed to correlate directly with extracellular sulfate concentrations. Experiments from pure cultures of sulfate reducers indicate maximal fractionation of 66/84 at sulfate concentrations similar to modern seawater at 28 mM (Sim et al., 2011), while εSR may be suppressed at very low sulfate abundances (<200 μM) (Habicht et al., 2002). On the oxidative side, the sulfide produced through MSR is typically re-oxidized to elemental sulfur, which is subsequently disproportionated to sulfate and sulfide, by coupling with the reduction of O2, NO2, or iron and manganese compounds (Canfield & Thamdrup, 1994). Disproportionation reactions thus can significantly augment the fractionations induced during MSR, resulting in isotopic contrasts between reactant sulfate and product sulfide of >70/84 (Fig. 5H).

Alternatively, very low rates of MSR may also lead to large fractionations. Recent studies of lacustrine euxinic systems indicate that >70/84 fractionations are achievable by both isolated and natural populations of sulfate reducers (Canfield et al., 2010; Gomes & Hurtgen, 2015). Furthermore, environmentally controlled experiments suggest that MSR-related fractionation could be strain specific (Bradley et al., 2016), or related to SRR that are dependent on the availability of organic substrates as electron donors (Canfield et al., 2010; Leavitt et al., 2013; Leavitt, 2014; Wing & Halevy, 2014; Gomes & Hurtgen, 2015). In this case, the magnitude of fractionation is inversely correlated with the rate of sulfate reduction (e.g., Xiao et al., 2010). With these constraints in mind, the Δδ34S > 70/84 in the lower interval of the Gaojiashan may reflect BSD coupled with MSR, or result solely from MSR with very low SRR. The former scenario is consistent with sulfide oxidation occurring along a chemocline above euxinic deep waters (Fig. 6A), which is our preferred interpretation for this marginal marine basin.

Based on systematic studies of modern environments and Phanerozoic shales (Berner & Raiswell, 1983, 1984), very low C/S ratios might indicate euxinic marine conditions. Although the C/S proxy is not well calibrated for carbonates, the preponderance of Gaojiashan limestones with values <1 (Fig. 5 lower panel) suggests the possibility of euxinic conditions in the depositional basin. This view is consistent with the high Ce/Ce* values in the upper Gaojiashan samples (Fig. 4H), although carbonates have notoriously low REE abundances and should thus be interpreted with caution.
Global indicators of dynamic redox conditions

Chemostratigraphic comparison of terminal Ediacaran successions in South China, Oman, and Namibia reveals both similarities and differences, suggesting local overprint of global signals in some basins (e.g., Loyd et al., 2013; Wood et al., 2015) (Fig. 7). Global conditions appear to be reflected in the similarity in the magnitude and direction of isotope trends in South China and Oman. For example, in the uppermost Buah Formation of Oman, paired CAS-pyrite measurements reveal large magnitude sulfur isotope fractionations (with maximal \(\Delta^{34}S \approx 50\% \)) prior to the first occurrence of Cloudina (Conway Morris et al., 1990), just as we document for the lower Gaojiashan Member. The large fractionation seen in two basins suggests the dominance of sulfur disproportionation reactions (Fike et al., 2006; Fike & Grotzinger, 2008), which is supported by a recent multiple sulfur isotope study indicating enhanced sulfide re-oxidation in the uppermost Buah (Wu et al., 2015). In this interval, disproportionation reactions likely dominated over MSR insofar as the latter would be discouraged if there was active photoautotrophic sulfide oxidation (Fig. 6A) (Habicht & Canfield, 2001). Stratigraphically higher in the Ara Formation where Cloudina occurs in carbonates interbedded with evaporites, the \(\delta^{34}S \) compositions of pyrite and CAS are notably invariant with a smaller magnitude of fractionation (ca. \(30\% \)) (Fike & Grotzinger, 2008), again exactly matching our observations from the upper Gaojiashan. The \(^{34}S \) enrichments in pyrite and the smaller sulfur isotope differences between reduced and oxidized phases are best explained by high rate of MSR, which we view as the dominant sulfur metabolism associated with the spread of anoxic bottom waters (Fig. 6B,C). In sum, the correlated observations from South China and Oman indicate a global environmental control on biological sulfur fractionations.

To the contrary, chemostratigraphic data from Cloudina-bearing strata of the Nama Group in southern Namibia provide a completely different pattern of \(^{34}S \) enrichments and fractionation. In this case, strongly positive \(\delta^{34}S_{\text{pyrite}} \) values are most-often paired with anomalously low and scattered \(\delta^{34}S_{\text{CAS}} \) values, resulting in inversely fractionated \(\Delta^{34}S \) values (Ries et al., 2009). Stratigraphically coherent CAS results are only seen in the Omkyk Member where there is a positive \(\delta^{34}S_{\text{CAS}} \) shift from ca. +10 up to +40\%\(_{\text{o}}\), which is similar to the trend encompassing the transition to the Cloudina-bearing beds in Oman and South China (Fig. 7), and in the uppermost Spitzkop Member below the Ediacaran–Cambrian boundary. In this case, however, the CAS sulfur isotope compositions are depleted in \(^{34}S \) by \(\approx 20\% \) relative to equivalent upper Ara strata in Oman. Based on our experience with quantitative preparation techniques, it would appear that the Namibian CAS samples were not adequately leached of non-CAS components. In contrast to our extensive efforts to remove the non-carbonate fraction (see Methods), Ries et al. (2009) leached the CAS powders with Milli-Q water only once, and this is unlikely to have quantitatively removed sulfate on mineral surfaces.
formed through pyrite oxidation (Marenco et al., 2008) or SAS (Peng et al., 2014). The presence of these contaminants would cause δ13C_carb values to be more negative and hence would not reflect depositional signatures (Wotte et al., 2012). In our view, the inversely fractionated sulfur isotopes from this succession should be interpreted with caution, although they do highlight the potential redox differences between equivalent terminal Ediacaran basins.

In addition, there are notable contrasts in carbon isotope anomalies among the terminal Ediacaran successions in South China, Oman, and Namibia. Chemostratigraphic data from the Dengying Formation suggest the possibility of three separate positive excursions (Fig. 1), with their different stratigraphic thicknesses likely associated with varying sediment accumulation rates. In contrast, there is significant δ13C_carb variability in the evaporite-rich succession from Oman (Fike & Grotzinger, 2008; Wu et al., 2015), including negative anomalies within the cloudinitid interval interspersed with at least two positive excursions (Fig. 7). In Namibia, there is only one post-Shuram positive δ13C_carb excursion followed by a long plateau of moderately positive (ca. +1 to +3‰) values leading up to the Ediacaran–Cambrian boundary (Fig. 7) (Ries et al., 2009). Other terminal Ediacaran successions, including those in northern India, also reveal significant differences in carbon isotope stratigraphic profiles (Kaufman et al., 2006). Taken together, the interbasinal variations in carbon and sulfur isotope compositions likely reflect redox differences in the depositional environments of the various basins. If correct, the Ediacaran experiment in animal life must have been spread across a dynamic environmental landscape, which may help to explain the distribution of geographically unique assemblages (Narbonne et al., 2014).

Enhanced alkalinity in the terminal Ediacaran ocean

Compared with carbonates in the underlying Doushantuo Formation (e.g., McFadden et al., 2008), the generally lower TOC contents of the Gaojiashan limestones are notable, and may reflect either depositional or early diagenetic processes. For example, pervasive water column or sediment recycling of organic matter may have decreased original organic carbon contents in sediments. In addition, the anaerobic conversion of simple organic compounds to alkalinity could have resulted in the formation of ubiquitouus authigenic carbonates (Higgins et al., 2009; Schrag et al., 2013). Driven by iron or sulfate reduction of available organic substrates, the addition of authigenic carbonate to the sediments would, however, have resulted in a negative (rather than a positive) carbon isotope excursion. Alternatively, the generally lower TOC values may reflect significant dilution by abundant carbonate formed from highly alkaline seawater. In this case, the source of the alkalinity was more likely to be from terrestrial weathering, as indicated by the significant rise in ⁸⁷Sr/⁸⁶Sr in the terminal Ediacaran Period (Kaufman et al., 1993, 1997; Halverson et al., 2007; Sawaki et al., 2010; Cui et al., 2015). The abundance and carbon isotopic composition of river-derived alkalinity in the Ediacaran Period was likely to be highly variable, depending on the differential weathering of bedrock lithologies (e.g., carbonates vs. silicates). In the absence of land plants or extensive microbial surfaces, terrestrial sources of alkalinity need not have been significantly depleted in ¹³C. Elevated seawater alkalinity at this time is consistent with the presence of aragonite crystal fans preserved in the time-equivalent Nama Group in Namibia (Grotzinger, 2000; Grotzinger et al., 2005; Hall et al., 2013), which records a singular Ediacaran positive δ¹³C_carb excursion (Kaufman et al., 1991; Saylor et al., 1998).

Overall high alkalinity is also consistent with the dominance of carbonate in terminal Ediacaran successions worldwide and may explain the extremely high accumulation rate estimated for the Dengying (i.e., ~650 m in ~10 million years), as compared with the underlying Doushatuo (i.e., <200 m in ~84 million years) (Fig. 1).

Enhanced terminal Ediacaran alkalinity may also be interpreted from our elemental results from the Gaojiashan, as well as interbasinal and intrabasinal equivalents. In particular, the [Sr] and Sr/Ca data measured from the Gaojiashan limestones reveal positive excursions in step with the positive δ¹³C_carb anomaly (Fig. 8). A similar [Sr] excursion coincident with peak δ¹³C compositions of carbonates is noted in the Gaojiashan-equivalent Shibantan Member in the Yangtze Gorges area (Sawaki et al., 2010). A rise in [Sr] is also noted in the broadly equivalent Nama Group in southern Namibia (Ries et al., 2009) although this geochemical anomaly postdates the first appearance of Cloudina and the singular positive δ¹³C excursion in the thick sedimentary succession. The apparent [Sr] rise in Namibia is potentially complicated by the addition of Sr from siliciclastics admixed with the carbonates due to the use of aqua regia (Ries et al., 2009), which would attack both carbonate and silicilastic components during dissolution. Nonetheless, all sections show positive [Sr] excursion in Cloudina-bearing intervals. For the Gaojiashan, the invariantly low Mg/Ca values of samples suggest that dolomitization played no role in the elemental excursion (Fig. 4).

Given that the dominant source of Sr in the ocean is from the chemical weathering of the continental crust (Shields, 2007; McArthur et al., 2012), including both silicates and carbonates, enhanced [Sr] and Sr/Ca values supports the view that terrestrial weathering and the delivery of alkalinity through riverine inputs buffered shallow ocean basins to variable degrees in the terminal Ediacaran Period. The weathering of Ca silicate minerals can be simply represented by the overall reaction (Berner, 2004):

\[\text{CO}_2 + \text{CaSiO}_3 \rightarrow \text{CaCO}_3 + \text{SiO}_2, \]

to the sediments would, however, have resulted in a negative (rather than a positive) carbon isotope excursion.

Enhanced alkalinity in the terminal Ediacaran ocean

Compared with carbonates in the underlying Doushantuo Formation (e.g., McFadden et al., 2008), the generally lower TOC contents of the Gaojiashan limestones are notable, and may reflect either depositional or early diagenetic processes. For example, pervasive water column or sediment recycling of organic matter may have decreased original organic carbon contents in sediments. In addition, the anaerobic conversion of simple organic compounds to alkalinity could have resulted in the formation of ubiquitous authigenic carbonates (Higgins et al., 2009; Schrag et al., 2013). Driven by iron or sulfate reduction of available organic substrates, the addition of authigenic carbonate to the sediments would, however, have resulted in a negative (rather than a positive) carbon isotope excursion. Alternatively, the generally lower TOC values may reflect significant dilution by abundant carbonate formed from highly alkaline seawater. In this case, the source of the alkalinity was more likely to be from terrestrial weathering,
time scales sequesters atmospheric CO₂ into carbonate minerals by liberating Ca²⁺ and HCO₃⁻ ions that are then carried to seawater by rivers. While terrestrial carbonate weathering is not a geological sink for atmospheric CO₂, the resultant flux of alkalinity does effect overall carbonate saturation state (e.g., Kump et al., 1999; Hoffman & Schrag, 2002; Higgins & Schrag, 2003).

Associated with higher alkalinity and higher carbonate saturation, it should be noted that Sr/Ca may also be controlled by precipitation rate. For biogenic carbonates (e.g., coccoliths), the ratio of Sr to Ca has been widely used as a productivity proxy (e.g., Stoll & Schrag, 2001; Stoll & Bains, 2003) insofar as there is a strong link between Sr/Ca, export production, and calcification rate (Stoll & Schrag, 2001). Similarly, laboratory experiments reveal that rapid precipitation rates induce greater Sr partitioning into abiogenic calcite (Lorens, 1981; Tesoriero & Pankow, 1996; Tang et al., 2008; DePaolo, 2011). Thus, the precipitation rate of carbonate in either Cloudina or in inorganic micrite may have additionally influenced the Sr/Ca ratios of the Gaojiashan limestones.

Variable partitioning of strontium by aragonite and calcite relative to seawater may also have resulted in the observed variations of Sr/Ca in the Gaojiashan samples. Strontium has a crystal ionic radius larger than that of Ca²⁺ and thus prefers the more open octahedral crystal structure of aragonite over the smaller hexagonal structure of calcite (Wray & Daniels, 1957; Lorens, 1981). Thus, on the one hand, the enhancement in [Sr] in the Gaojiashan limestones and their equivalents might reflect a secular change from calcite to aragonite-dominated seas (e.g., Stanley & Hardie, 1998), although the short stratigraphic interval represented by the Gaojiashan Member would seem to preclude this possibility. On the other, the [Sr] excursion might result from postdepositional diagensis, through which Sr was preferentially flushed from specific horizons in the Gaojiashan Member during neomorphic aragonite-to-calcite transformations (Katz et al., 1972). However, given the excellent petrographic and oxygen isotopic preservation of the samples, the absence of dolomitization, and smooth carbon and sulfur isotope trends, we attribute the elevated Sr/Ca ratios in the Cloudina interval to (i) elevated Sr flux from the continents to contemporaneous seawater and/or (ii) enhanced precipitation rate in a carbonate over saturated ocean.

Emerging support for weathering-induced high alkalinity in terminal Ediacaran seawater may come from Ca isotope (δ⁴⁴Ca) measurements of the Gaojiashan-equivalent Shibantan Member. In this unit, a sharp negative δ⁴⁴Ca excursion (down to 0.3‰) has been interpreted to reflect anomalously high seawater Ca concentrations. The Ca isotope system has been used to make inferences regarding the seawater Ca cycle in deep time (DePaolo, 2004; Nielsen et al., 2011), with a special emphasis on perturbations of δ⁴⁴Ca during chemical weathering events. Enhanced chemical weathering in the Cenozoic (between 40 and 10 Ma), for example, has been interpreted based on the presence of negative δ⁴⁴Ca excursions (De La Rocha & DePaolo, 2000; DePaolo, 2004). Similarly, a Cretaceous negative δ⁴⁴Ca excursion believed to be related to enhanced weathering (Blätter et al., 2011) coincides with a positive δ¹³C anomaly and an Oceanic Anoxic Event, all of which match our observations of the Gaojiashan.

© 2016 John Wiley & Sons Ltd

Fig. 8 Integrated litho-, bio-, and chemo-stratigraphy of the terminal Ediacaran Gaojiashan Member in the study area, Yangtze Gorges area, and Namibia, including geochemical profiles of carbonate carbon isotopes (δ¹³Ccarb, V-PDB), strontium concentration ([Sr] in ppm, plotted in log scale), and δ⁴⁴/⁴²Ca (‰).
In concert, the sedimentological and geochemical observations of Cloudina-bearing strata in South China and elsewhere suggest that the terminal Ediacaran ocean was highly alkaline. If correct, high concentrations of Ca and alkalinity well may have enabled the earliest example of calcareous biomineralization by animals.

Environmental context of pyritization and biomineralization

Based on our chemostratigraphic observations of the Gaojiashan Member, the first appearance of Cloudina coincided with the development of anoxic and episodically euxinic conditions across the shelf environment. It is likely, however, that this first biomineralized metazoan lived in the oxidized shallower water column and was swept into deeper anoxic settings by storm events (Cai et al., 2010) (Fig. 5B). In contrast, our geochemical results suggest that Conotubus and other soft-bodied Ediacara biotas thrived at deeper anoxic settings by storm events (Cai et al., 2010, 2014; Meyer et al., 2014). It is notable that Conotubus and many Ediacara remains, as well as the microbial surfaces, were preserved in these environments through pyritization (Gehling, 1999; Schiffbauer et al., 2014). In the ‘death mask’ model, pyritization of a decomposing metazoan would stabilize its surface and allow the external form of the organism to be imprinted with exquisite detail; in the case of the Gaojiashan Member, similar pyritization process may have also molded Conotubus tubes from inside. Based on in situ SIMS δ^{34}S analyses, it has been proposed that pyritization of Conotubus was fueled by the degradation of labile organic tissues through MSR (Schiffbauer et al., 2014) near the sediment–water interface. Consistent with pyritization as a widespread fossilization pathway, many soft-bodied fossils and associated microbial surfaces in the Gaojiashan and Shibantan exposures are coated with iron oxides and jarosite (an iron-bearing sulfate mineral) that are the oxidative weathering products of early diagenetic pyrite (Hall et al., 2013).

The balance between the ecological pressures and physiological responses that resulted in the biomineralization of Cloudina is nicely viewed from the Gaojiashan Member and its equivalents in South China. On the one hand, Hua et al. (2003) highlighted the large number of drill holes on Cloudina shells in the Dengying Formation and hypothesized that predation tipped the balance toward calcification as a means of protection. On the other hand, our results emphasize clear temporal changes in seawater chemistry that are associated with this evolutionary milestone. We interpret the geochemical trends to reflect enhanced terminal Ediacaran chemical weathering that introduced nutrients, which drove primary productivity, the spread of anoxia, and higher rates of organic carbon burial. Chemical weathering would also have delivered alkalinity and cations including calcium to seawater, promoting rapid carbonate accumulation in shallow marine settings. In addition, sulfate delivery would have further stimulated MSR, which would provide an additional source of seawater alkalinity depending on the extent of water column anoxia. Biomineralization could then have been a means to remove excess calcium from the newly developed circulatory systems of evolving metazoans (Simkiss, 1977) in the context of higher overall seawater alkalinity in the terminal Ediacaran Period (Grotzinger et al., 2005).

Studies of Phanerozoic biomineralization further highlight the effect of seawater chemistry on calcification. Although the secretion of biominerals often occurs in internal environments isolated from seawater (Weiner & Dove, 2003), seawater chemistry could indirectly determine skeletal mineralogy by affecting the physiological costs of biomineralization (Knoll, 2003a), thus resulting in distinct patterns of skeleton evolution through Earth history. Indeed, extensive compilation of non-skeletal carbonates and hypercalcifying animals in the Phanerozoic reveals that the Mg/Ca and [Ca] of seawater during periods of aragonite or calcite-dominated seas had a strong influence on skeletal mineralogy (Stanley & Hardie, 1998; Stanley, 2006; Porter, 2010). High-Mg calcite and aragonite shells appear to have dominated under aragonite seas, while shells composed of low Mg calcite dominated under calcite seas. This pattern is also seen in the Cambrian Period when the first massive biodiversification of skeletal animals occurred (Porter, 2007). In the terminal Ediacaran, the widespread appearance of seafloor aragonite fans (Grotzinger, 2000; Grotzinger et al., 2005; Hall et al., 2013) and rapid accumulation of carbonates supports the aragonite sea hypothesis, and is consistent with the inferred high-Mg calcite mineralogy of Cloudina (Grant, 1990; Zhuravlev et al., 2012).

Temporal growth in the oceanic sulfate reservoir

Projected to the world stage and viewed through the long lens of Earth history, paired sulfur isotope data in the terminal Ediacaran Gaojiashan Member stand out among the highest δ^{34}S sulfate values (up to $+40\%$) and largest S isotope fractionations (ca. $+70\%$) for the whole Precambrian (Fig. 9). This pattern may reflect a strongly stratified ocean (e.g., Jiang et al., 2007; Shen et al., 2008, 2010, 2011; Li et al., 2010), which would be particularly meaningful during the terminal Ediacaran when a putative atmospheric
and oceanic oxygenation event occurred (i.e., Neoproterozoic Oxidation Event, or NOE) (Kaufman et al., 1993; Shields-Zhou & Och, 2011; Och & Shields-Zhou, 2012; Lyons et al., 2014; Liu et al., 2016).

Growth of the Ediacaran sulfate pool has been hypothesized to be associated with the NOE (Fike et al., 2006), which occurred in the aftermath of the Marinoan ice age (ca. 635 Ma). A recent quantitative model analysis based on sulfur isotope trends through the Ediacaran Period suggests that oceanic \[\text{SO}_2/\text{CO}_4\] was low (<5 mM) in the aftermath of the Marinoan glaciation, but then rose (>5 mM) across the Ediacaran–Cambrian boundary (Algeo et al., 2015). The inflection of sulfate concentrations may well have coincided with the middle Ediacaran Shuram excursion, a profound negative carbon isotope anomaly (Grotzinger et al., 2011) recognized in multiple sections across the globe including Shuram Formation in Oman and the upper Doushantuo Formation of South China (Cui et al., 2015). Sulfur isotope profiles in both regions reveal a parallel decrease in both \[^{34}\text{S}_{\text{pyrite}}\] and \[^{34}\text{S}_{\text{CAS}}\] (Cui et al., 2015) that likely reflect the significant growth of the Ediacaran sulfate pool (Fike et al., 2006; Halverson & Hurgen, 2007; Kaufman et al., 2007; McFadden et al., 2008). Consistent with this view, pseudomorphs of gypsum are found in the Shuram equivalent Wonoka Formation in South Australia (Calver, 2000) and in the Doushantuo (Lu et al., 2013). Above the Shuram, an increasing number of bedded evaporite horizons have been discovered in terminal Ediacaran successions, including the Dengying (Siegmund & Erdtmann, 1994; Duda et al., 2015; and this study) and Ara formations (Fike & Grotzinger, 2010), as well as the Hanseran Evaporite Group in northwestern India (Strauss et al., 2001; Mazumdar & Strauss, 2006).

The trigger for the terminal Ediacaran rise in seawater sulfate remains a question of considerable debate. It has been proposed by Canfield & Farquhar (2009) that the emergence of bioturbation near the Ediacaran–Cambrian boundary was the proximate cause insofar as sediment

Fig. 9 Evaporite, CAS, and pyrite sulfur isotope data through Earth history. Paired \(^{34}\text{S}\) data are compiled from the literature (after (Canfield & Farquhar, 2009; Och & Shields-Zhou, 2012; Sahoo et al., 2012)). Recently published Neoarchean \(^{34}\text{S}\) data have also been included (e.g., Paris et al., 2014; Zhelezinskaia et al., 2014). The sulfate concentration constraints are ca. 5–10 mM during Archean (Habicht et al., 2002; Zhelezinskaia et al., 2014), ca. 2.5 mM after the GOE (Shen et al., 2002; Canfield, 2004; Kah et al., 2004; Hurtgen et al., 2005; Bekker et al., 2006; Canfield & Farquhar, 2009; Reuschel et al., 2012), and ca. 10 mM during NOE (Canfield & Farquhar, 2009; Algeo et al., 2015). \(^{34}\text{S}_{\text{sulfate}}\) composition of the terminal Ediacaran ocean (ca. +40‰) was determined by measurements of bedded evaporites in Oman (Fike & Grotzinger, 2008). GOE = Great Oxidation Event; NOE = Neoproterozoic Oxidation Event. The four conceptual biogeochemical models for redox architectures of the ocean during Archean, GOE, NOE, and Phanerozoic are shown in the panels beneath the time-series data. See the main text for detailed discussions.
mixing would result in enhanced sulfide oxidation and recycling (Bottjer et al., 2000; Meysmann et al., 2006; Rogov et al., 2012; Chen et al., 2014). While bioturbation clearly modified ecosystems in the Fortunian Stage of the Cambrian Period (Bottjer et al., 2000; Meysmann et al., 2006), there is little support for deep penetration by animals into sedimentary layers dominated by microbial mats in the Shuram or terminal Ediacaran intervals (e.g., Carbon & Narbonne, 2014; Meyer et al., 2014). Moreover, recent investigations have demonstrated that the mixing of sediments on marine shelves remained limited until at least the late Silurian, 120 million years after the Precambrian–Cambrian transition (Tarhan & Droser, 2014; Gingras & Konhauser, 2015; Tarhan et al., 2015).

Alternatively, it is likely that the increase in Ediacaran sulfate concentrations was driven by enhanced oxidative weathering of pyrite in continental and oceanic sediments exposed by sea level regression (Kaufman et al., 2007; Wang et al., 2016). This scenario is consistent with the profound increase in seawater 87Sr/86Sr (from ca. 0.7080 to 0.7090) recorded globally in carbonates deposited during the Shuram excursion (Burns et al., 1994; Calver, 2000; Melezhik et al., 2009; Sawaki et al., 2010; Cui et al., 2015). The Sr isotope shift most likely accompanied enhanced silicate weathering (Kaufman et al., 1993; Halverson et al., 2007; Cui et al., 2015), which led to an increase in the delivery of nutrient and sulfate to the oceans. By stimulating photosynthesis, these continental fluxes would on the one hand result in the oxidation of surface environments, while on the other, the remineralization of organic matter along marginal marine settings would simultaneously result in the expansion of oxygen minimum zones (OMZs). Oceanic redox stratification would have simultaneously stimulated the oxidative side of the sulfur cycle through widespread sulfur disproportionation along chemoclines (Canfield & Thamdrup, 1994; Fike et al., 2006; Wu et al., 2015) and the reductive side through MSR within the anoxic plumes. Both microbial processes would have delivered 32S sulfur as pyrite into the sediments and thereby drove oceanic sulfate compositions to positive δ^{34}S extremes (Canfield, 2004).

CONCLUSIONS

Terminal Ediacaran strata of the Gaojiashan Member preserve a record of dynamic carbon and sulfur cycling ultimately driven by tectonic forces, a rise in atmospheric oxygen, and enhanced chemical weathering of the exposed continents. Data from South China suggest that the attendant flux of nutrients and alkalinity increased oceanic productivity and carbonate saturation state, resulting in a redox stratified ocean basin where animals evolved to form calcareous shells, through the combined ecological pressure of predation and the environmental pressure of high carbonate saturation, for the first time in Earth history.

ACKNOWLEDGMENTS

We thank Rebecca Plummer, Mike Evans, and Brittney Gaeta for their assistance in the UMD Paleoclimate CoLaboratory. This research is funded by the NASA Exobiology grant (NNX12AR91G to AJK and NNX15AL2G7 to SX), the NSF Sedimentary Geology and Paleontology grant (EAR0844270 and EAR1528553 to AJK; EAR1528553 to SX), the NSF grant (EAR1032156) to the Arizona LaserChron Center, the AAPG Grants-In-Aid Program Marilyn Atwater Memorial Grant to HC, the Explorers Club Washington Group grant to HC, the Carnegie Institution of Washington Postdoctoral Fellowship to XML, and the National Natural Science Foundation of China grant (41572012) to YC. Thanks to the party chief of the Gaojiashan village Fazhi Li for his warm-hearted assistance in the field. Thanks to James Farquhar and Heather M. Stoll for helpful comments. The manuscript also benefits from constructive reviews by Pedro J. Marenco, Marc Lallamme, and an anonymous reviewer. Thanks also to the editor Kurt Konhauser for handling this manuscript.

REFERENCES

Borowski WS, Rodriguez NM, Paull CK, Usler W (2013) Are 34S-enriched authigenic sulfide minerals a proxy for elevated
Environmental context for animal biominerization

Environmental context for animal biomineralization

© 2016 John Wiley & Sons Ltd

© 2016 John Wiley & Sons Ltd

Environmental context for animal biomineralization

Additional Supporting Information may be found in the online version of this article:

Table S1. U-Pb geochronologic analyses of two detrital zircon samples in the lower Gaojiashan Member.

Table S2. Chemostratigraphic data of carbonate C isotopes of the Doushantuo and Dengying formations plotted in Fig. 1.

Table S3. Chemostratigraphic data of C, O, and S isotopes of the Gaojiashan Member.

Table S4. Chemostratigraphic data of major and trace element concentrations of the Gaojiashan Member.

Fig. S1. Chemostratigraphic profiles for the Gaojiashan Member.

© 2016 John Wiley & Sons Ltd