In vivo biotinylated calpastatin improves the affinity purification of human m-calpain

Hung Huy Nguyena,b, Alexander N. Volkova,b,c, Guy Vandenbussched, Peter Tompaa,b,e, Kris Pauwelsa,b,*

a VIB - VUB Centre for Structural Biology (VIB CSB), Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
b Structural Biology Brussels (SBB), Department of Biotechnology (DBIT), Vrije Universiteit Brussel (VUB), Brussels, Belgium
c Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels, Belgium
d Laboratory for the Structure and Function of Biological Membranes, Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
e Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary

ABSTRACT

Recently we established a novel affinity purification method for calpain by exploiting the specific and reversible binding properties of its intrinsically disordered protein inhibitor, calpastatin. The immobilization strategy relied on the strength and specificity of the biotin - streptavidin interaction. Here, we report an improved and optimized method that even enables the general applicability of in vivo biotinylated (intrinsically disordered) proteins in any affinity capture strategy. Since in vitro chemical biotinylation is only accomplished with reagents that lack exact site specificity, it can not only cause sample heterogeneity but it can also hamper the functionality of the biotinylated molecules. Therefore, we have developed a recombinant expression protocol to produce in vivo biotinylated human calpastatin domain 1 (hCSD1) in Escherichia coli. We have experimentally verified that the biotinylated polypeptide tag is compatible with the intrinsically disordered state of hCSD1 and that it does not influence the functional properties of this intrinsically disordered protein (IDP). The in vivo biotinylated hCSD1 was then used without the need of any prepurification step prior to the affinity capturing of its substrate, human m-calpain. This leads to a simplified purification strategy that allows capturing the calpain efficiently from a complex biological mixture with only a single chromatographic step and in a considerably reduced timeframe. Our approach is generally applicable through the practical implementation will showcase the power to exploit the properties of IDPs in affinity capture strategies.

1. Introduction

The structural and biophysical characterization of proteins primarily relies on substantial amounts of recombinantly expressed protein material that is repeatedly produced to enable various experimental studies. Therefore, efficient protein production and purification is often a bottleneck in the pipeline of ambitious structural biology and drug development projects [1]. Calpains (EC 3.4.22.53) are such a class of difficult to purify proteases [2,3]. Mammalian calpains play an important biotechnological role in the post-mortem tenderization of meat [4], while the human variants are involved in pathogenesis of Alzheimer's disease, cancer and diabetes [1,5]. The activity of these intracellular calcium-dependent proteases is controlled by a specific endogenous inhibitor, called calpastatin [6].

Recently, we have reported a novel affinity purification protocol whereby we exploit the binding specificity and affinity of the intrinsically disordered protein (IDP) human calpastatin domain 1 (hCSD1) to purify its target protein, human m-calpain [7]. Upon further considering the advantage of biotin-based immobilization, we have explored the feasibility of using in vivo biotinylation for a simplified and improved high-affinity one-step purification. Particularly, the reproducibility and heterogeneity of the in vitro chemical biotinylation can be a limiting factor in the functionality of the capturing agent in the affinity chromatography. To this end, we have developed a BirA protein-biotin ligase (EC 6.3.4.15) co-expression strategy in Escherichia coli for the recombinant production of an avitag-tagged hCSD1 construct. The AviTag™ (also known as biotin acceptor peptide, BAP-tag) is a 15 residues-long sequence (GLNDIFEAQKIEWHE) that is specifically recognized by the biotin ligase BirA [8]. BirA adds D-biotin covalently to this polypeptide tag via a biotinyl 5′-adenylate intermediate that

* Corresponding author. Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
E-mail address: kris.pauwels@vub.be (K. Pauwels).

https://doi.org/10.1016/j.pep.2018.01.002
Received 15 November 2017; Received in revised form 14 December 2017; Accepted 5 January 2018
Available online 13 January 2018
1046-5928/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
ultimately results in the formation of an amide-linkage between the carboxyl group of biotin and the epsilon-amino group of the modified lysine [9]. Interestingly, we wish to exploit the fact that only a single endogenous protein in *E. coli* has been reported to become biotinylated by BirA [10]. This is the vitamin carboxyl carrier protein (BCCP; UniProt POA08B), which is a 156 residues-long protein. While recombinantly expressed IDPs can be purified easily upon boiling the resuspended bacterial pellet [7,11], we anticipate that the well-folded BCCP will precipitate upon boiling the bacterial lysate.

Here, we show that the avi-tagged hCSD1 construct can be biotinylated efficiently and specifically in *E. coli*. We also show that the avi-tag is fully compatible with the intrinsically disordered nature of the hCSD1 and hence has no negative effect on its interaction with m-calpain. This in vivo biotinylated hCSD1 is then used to efficiently purify its natural binding partner in a single chromatographic step.

2. Materials and methods

2.1. Bacterial strains and plasmid transformation

As recombinant expression vector we used the pET22b plasmid (Novagen) whereby the hCSD1 gene (residues 137 - 277 of the human calpastatin (UniProt ID P20810) is fused with an N-terminal AviTag™ sequence, extended with a stop codon and cloned within the NdeI and EcoRI restriction sites through a commercial gene synthesis service (Genscript). This plasmid (which we designated pAvihCSD1) contains an ampicillin resistant gene and an inducible T7 promoter system. For the co-expression of the BirA protein and the in vivo biotinylation experiments, we employed two commercially available bacterial strains: *E. coli* AVB100 and AVB101 (AviDity LLC). AVB100 is an *E. coli* K2 strain [MC1061 araD139 δ(ara-leu)7696 δ(lac)74 galU galK hsdR2(rK- mK +) mcrB1 rpsL(StrR)], whereby the birA gene is integrated into the bacterial chromosome. In this strain the BirA expression can be induced with arabinose. The AVB101 is an *E. coli* strain (hsdR, lon11, sulA1) that contains pBirAc, an IPTG inducible plasmid comprising the birA gene and a chloramphenicol-resistance gene.

Since the *E. coli* K12 strain (AVB100) does not contain the T7 RNA polymerase system we resorted to the pT7pol23 and pT7pol26 plasmids (generously provided by Dr Henri De Greve), which both contain a kanamycin-resistance gene, to express T7 polymerase under heat- and IPTG-inducible promoter, respectively [12]. For the co-transformation of the plasmids, the pAvihCSD1 and each of the pT7 plasmids were transformed in two separate steps into chemically competent *E. coli* BL21-AI and BL21(DE3) strains that contained the corresponding IPTG-inducible promoter, respectively [12]. For the co-transformation procedures

2.2. Recombinant protein production and in vivo biotinylation of hCSD1

Recombinant protein expression was performed in 2 L baffled flasks containing 1 L LB (Duchefa) while shaking at 180 rpm at 37 °C in a minitron orbital shaker-incubator (InFors HT). Before the inoculation, D-biotin (Sigma) was added to the media to the final concentration of 50 μg/mL. For the pT7pol23 containing cells, the culture temperature was raised to 42 °C for 1 h when the OD₆₀₀ reached 0.4 and subsequently reduced to 37 °C prior to the addition of 1 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG). For the pT7pol26 containing cells, 0.4% L-arabinose was added to the culture at OD₆₀₀ of 0.4, prior to induction with 1 mM IPTG when the OD₆₀₀ reached 0.6. The cell cultures were collected after 5 h of induced protein expression. The collected cell pellets were centrifuged at 5000 g for 15 min, the supernatants were discarded and the cell pellets were stored at -20 °C.

For the 15N-isotope labelling of hCSD1 and avi-hCSD1, the *E. coli* BL21-AI and BL21(DE3) strains that contained the corresponding plasmids were grown in M9 minimal medium (1L contained 6.0 g Na₂HPO₄, 3.0 g KH₂PO₄, 0.5 g NaCl, 1.0 g 15NH₄Cl, 1 mM MgSO₄, 0.6 mM CaCl₂, 1 mg/L D-biotin, 1 mg/L thiamine and supplemented with the required antibiotics) using 15N-isotope NH₄Cl as the sole nitrogen source (Cambridge Isotopes Laboratories). As carbon source we added 0.2% D-glucose for *E. coli* BL21(DE3)) or 0.2% glycerol for *E. coli* BL21-AI to the minimal medium. The cells were grown at 37 °C as described earlier and protein expression was induced with 1 mM IPTG at OD₆₀₀ of 0.6. The cell cultures were collected after 5 h of induction.

2.3. Protein purification procedures

2.3.1. Purification of various hCSD1 constructs

The hCSD1-containing cell pellets (i.e. untagged hCSD1, avi-hCSD1 and b-avi-hCSD1) were resuspended in a 50 mM Tris-HCl pH 7.5 buffer containing 0.1 mM ethylenediaminetetraacetic acid (EDTA), 2 mM di-thiothreitol (DTT) and protease inhibitor cocktail (Roche tables), followed by heating at 90 °C for 15 min in a ThermoScientific water-bath. The lysates were centrifuged at 21119 g for 30 min. After filtering the cleared lysates through a 0.2 μm cut-off polyethersulfone membrane (Sarstedt), the samples were kept on ice and all subsequent protein purification steps were performed at 4 °C. The sample was applied to a 5 mL HiTrap DEAE anion exchange column (GE Healthcare) equilibrated with 50 mM Tris-HCl, 0.1 mM EDTA, 2 mM DTT pH 7.5 and the protein was eluted with a step elution of 150 mM NaCl [7]. Depending on the sample purity an optional size exclusion chromatography was performed using a Superdex 75 10/30 GL (GE Healthcare) in 20 mM 3-(N-morpholino)propanesulfonic acid (MOPS), 1 mM Tris(2-carboxyethyl)phosphine (TCEP) pH 7.5.

2.3.2. Affinity purification of human m-calpain with in vivo biotinylation hCSD1

The lysate containing in vivo biotinylated avi-tagged hCSD1 (b-avi-hCSD1) and the purified b-avi-hCSD1 was loaded into a HiTrap Streptavidin HP 1 ml column (GE Healthcare) equilibrated with the binding buffer MOPS pH 7.5, 1 mM TCEP and 150 mM NaCl) supplemented with 5 mM CaCl₂. The column was washed with 5 column volumes of the same binding buffer, followed by loading the C105A-calpain lysate supplemented with 5 mM CaCl₂ to the column. The calpain was eluted from the b-avi-hCSD1-containing resin by applying 10 mM EDTA (in binding buffer).

2.4. In vitro chemical biotinylation of hCSD1

The chemical biotinylation of hCSD1 was accomplished using EZ-Link™ NHS-PEG4-Biotinylation kit (Pierce Biotechnology) according to the manufacturer’s instructions and as described previously [7]. The extent of the biotinylation was determined by a colorimetric quantification kit provided by the same manufacturer (Pierce Biotechnology) utilizing the absorbance-based 2-(4’-hydroxyazobenzene) benzoic acid (HABA) dye.

2.5. Electrophoresis and western blotting

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was run using 12.5% polyacrylamide gel with a PageRuler™ prestained protein ladder (ThermoFisher Scientific) in Tris-glycine buffer at 200 V for 40 min. To directly visualize all the proteins, the gel was stained protein ladder (ThermoFisher Scientific). PAGE) was run using 12.5% polyacrylamide gel with a PageRuler™ prestained protein ladder (ThermoFisher Scientific).
stained using PageBlue™ staining solution (ThermoFisher Scientific).

After performing SDS-PAGE, the gel was transferred to a 0.2 μm polyvinylidene fluoride (PVDF) membrane using Trans-blot Turbo blotting system (Bio-Rad) at 1.3 A for 14 min. The transferred membrane was blocked with phosphate-buffered saline (PBS) containing 0.1% Tween-20 and 5% non-fat dried milk for 30 min, followed by incubating with horseradish peroxidase (HRP)-conjugated streptavidin (ThermoFisher Scientific) at a 1:10000 dilution, on a vertical rotator for 2 h at room temperature. The membrane was further rinsed three times with PBS, and washed twice with PBS supplemented with 0.1% Tween-20 for 20 min each. The membrane was incubated with Pierce ECL Western blotting substrate for 2 min after visualization using Image Lab software with ChemiDoc XRS System (Bio-Rad).

2.6. Mass spectrometry sample preparation and analysis

2.6.1. Protein intact mass analysis

The four proteins that were analyzed (hCSD1, (chemically biotinylated) b-hCSD1, avi-hCSD1 and (in vivo biotinylated) b-avi-hCSD1) were solubilized in 0.5% TFA, desalted on ZipTip C18 (Millipore) and eluted in 5 μL 50% acetonitrile/1% formic acid (v/v). The samples were loaded into a nanoflow capillary (Thermo Fisher Scientific). Electron spray ionisation (ESI) mass spectra were acquired on a quadrupole time-of-flight instrument (Q-Tof Ultima – Waters/Micromass) operating in the positive ion mode, equipped with a Z-spray nanoelectrospray source. Data acquisition was performed using a MassLynx 4.1 system. The spectra were recorded at 25 °C with agitation at 1000 rpm using the ForteBio data acquisition software v9.0. The fitting of individual binding curves was done using ForteBio data analysis software v9.0. The steady state analysis was analyzed in Graphpad Prism 7 using non-linear regression with the equation

\[Y = \frac{B_{\text{max}} \times X}{K_D + X} \]

where \(B_{\text{max}} \) is the maximum specific binding, and \(K_D \) represents the equilibrium dissociation constant.

2.7.2. Bio-layer interferometry

The b-hCSD1 and b-avi-hCSD1 at a concentration of 2.5 and 50 μg/mL, respectively, were immobilized with a similar BLI intensity onto SA biosensors (ForteBio) that contain covalently attached streptavidin. The buffer consisted of 20 mM MOPS pH 7.5, 5 mM CaCl2, 0.1% Tween-20 and 0.1% bovine serum albumin (BSA), which was used to minimize the non-specific interaction of calpain with the biosensors. A calpain concentration range from 60 nM to 500 nM was used during the association phase. Each of those concentrations had its corresponding non-functionalized biosensor as a parallel reference sensor. The binding data were recorded at 25 °C with agitation at 1000 rpm using the ForteBio data acquisition software v9.0. The fitting of individual binding curves was done using ForteBio data analysis software v9.0. The steady state analysis was analyzed in Graphpad Prism 7 using non-linear regression with the equation

\[Y = \frac{B_{\text{max}} \times X}{K_D + X} \]

where \(B_{\text{max}} \) is the maximum specific binding, and \(K_D \) represents the equilibrium dissociation constant.

3. Results and discussion

3.1. In vivo biotinylation of avi-hCSD1 and purification of different hCSD1 variants

Since the hCSD1 sequence has no natural BAP-sequence [14], we generated an avi-tagged hCSD1 construct (avi-hCSD1) so that in vivo biotinylation would occur only specifically at the N-terminal avi-tag lysine site. Therefore, we tested different expression strategies to establish an in vivo biotinylation protocol for avi-hCSD1. Since the re-combinant overexpression of hCSD1 was reported to be successful with inducible T7 promoter plasmas, we opted for a pET22 plasmid to produce the avi-hCSD1 in E. coli [7,15]. Because the two commercially available E. coli strains (AVB100 and AVB101) that enable in vivo biotinylation do not contain the T7 RNA polymerase, we tested 2 plasmids (pT7pol23 and pT7pol26) that carry an inducible T7 RNA polymerase gene for its applicability in our production strategy [12]. The results of the SDS-PAGE and Western blotting analysis of these expression tests are depicted in Fig. 1.

Even though, the expression of the in vivo biotinylated avi-hCSD1 (represented as b-avi-hCSD1) was not clearly observable through the appearance of one additional prominent protein band via SDS-PAGE (Fig. 1A), the Western blotting analysis of the same gel showed that the in vivo biotinylated form of the protein expressed well in all combinations of plasmids and E. coli strains (Fig. 1B). Upon comparing the pT7pol23 and pT7pol26 plasmids, we noticed that the cells containing pT7pol23 displayed a more pronounced leaky expression of b-avi-hCSD1 prior to induction with IPTG as compared to the pT7pol26 construct. This observation can be rationalized by the fact that pT7pol23 contains a thermally inducible promoter that is not tightly controlled at 30 °C. Thus, this protocol can probably be optimized by reducing the growth temperature from 37 °C to 28 °C (or lower) prior to shifting it to 42 °C to induce expression [16].

From the Western blotting it also becomes clear that the anticipated endogenously biotinylated BCCP protein was present in the induced sample (albeit at variable quantities), as its band runs at the expected molecular mass of 16.7 kDa (Fig. 1B). In the AVB101 strain, another (unexpected) biotinylated contaminant was observed around 35 kDa. Based on those observations, we have selected the combination of the E. coli AVB100 strain and the pT7pol26 plasmid for further purification as
it had a good level of b-avi-hCSD1 expression and less contaminating
biotinylated proteins. Since it was also reported that BirA would be less
soluble at elevated temperatures, we preferentially opted for the
pT7pol26-based expression system whereby the fermentation tem-
perature is kept constant [17].

With E. coli AVB100 that contains the pAvihCSD1 and pT7pol26
plasmids we scaled up the production of b-avi-hCSD1 (in vivo
biotinylated avi-hCSD1). After the heat treatment of the resuspended cells, b-
avi-hCSD1 was isolated from the cleared lysate by an anion exchange
chromatography and a polishing size exclusion chromatography
(Fig. 2). During this procedure, we observed the presence of a heat-
resistant contaminating protein, which we further identi-
fied by MS/MS
peptide microsequencing as flagellin. We found that flagellin can be
separated from b-avi-hCSD1 by size exclusion chromatography using a
Superdex 75 10/30 GL column (Fig. 2B and C). Although the presence
of flagellin would not affect our downstream calpain puri-
fication strategy (see section 3.5) as it does not bind to the streptavidin column
and is located in the flow-through (Fig. 7 - lane 2), we have also tried to
apply the commercial detergent-based BugBuster® protein extraction
reagent (Novagen) as an alternative lysis method in an attempt to re-
move flagellin, without success.

The purification of the untagged version of hCSD1 and its in vitro
chemical biotinylation (resulting in b-hCSD1) allowed for further functional and comparative studies with the b-avi-hCSD1. In this con-
text, we can also report that the production of 15N-isotope labelled
hCSD1 and avi-hCSD1 through bacterial expression in minimal medium
and its subsequent purification did not reveal any additional experi-
mental obstacles e.g. degradation or presence of contaminants ...).

3.2. Mass spectrometry analysis of hCSD1 and avi-hCSD1 biotinylation

We confirmed by ESI MS analysis that the experimental molecular
mass of purified b-avi-hCSD1 (17047 Da) was increased with a shift of
mass of 226 Da as compared to avi-hCSD1 (experimental molecular
mass of 16821 Da). This corresponds to the addition of a single D-biotin
molecule to the protein by the BirA biotin-protein ligase. By MS/MS
peptide microsequencing and the direct comparison of avi-hCSD1 and
b-avi-hCSD1 peptides, we further confirmed that the only site of bio-
tinylation is indeed the first lysine in the sequence, which is located
within the avi-tag. This experimental result also reveals that the heat
treatment that is typically employed for the purification of IDPs does
not alter the integrity of the protein and doesn't lead to any further chemical modifications.

With regard to the chemical (in vitro) biotinylation, by combining
peptide mass fingerprinting and MS/MS peptide microsequencing we
could determine that most of the lysine residues in b-hCSD1 were
biotinylated. For each detected digested peptide that contains one or
two lysine residues, we observed a 473 Da or 946 Da shift of its ex-
perimental molecular mass, respectively. This is in perfect agreement
with the expected mass of 473.22 Da that is added to the target lysine
by the reaction with NHS-PEG4-biotin, which is a PEGylated and
amine-reactive variant of D-biotin. We could detect the appearance of
biotinylated peptides that cover 10 out of 13 lysine residues in the

Fig. 1. Recombinant expression analysis of in vivo biotinylated avi-tagged hCSD1 (b-avi-hCSD1) based on (A) SDS-PAGE with Coomassie staining and (B) Western blotting
with HRP-conjugated streptavidin. The different combinations of E. coli strains (the E. coli K12-derived AVB100 and the E. coli B-based AVB101) that contain the pAvihCSD1 plasmid
and either pT7pol23 or pT7pol26, are indicated at the top of the image. NI represents the non-induced cells, while I represents the sample of the cells at 4 h after the induction of protein
expression. The proteins of interest are indicated with an arrow and the molecular weight (in kDa) of the marker proteins is indicated on the left hand side of the images.

Fig. 2. SDS-PAGE analysis with Coomassie staining of (A) the anion exchange
chromatography and (B) the gel filtration elution fractions of b-avi-hCSD1, which
are corresponding to (C) the gel filtration elution profile. 1: lysate of E. coli AVB100
containing pT7pol26 and pAvihCSD1, after heat treatment and clearance by centrifu-
gation; 2: flow-through; 3: elution fraction at 150 mM NaCl; Panel B represents the gelfiltration elution fractions for avi-hCSD1 whereby the numbering corresponds to the elution
fractions of the chromatogram that is depicted in Panel C.

H.H. Nguyen et al. Protein Expression and Purification 145 (2018) 77–84
hCSD1 sequence. Also the concomitant disappearance of the corresponding unmodified peptides was monitored. Unfortunately, in this way, it was not possible to detect the N-terminal peptide comprising residues 1-38 from hCSD1, which contains 3 lysines. The undetectability of this peptide (in both hCSD1 and b-hCSD1) is likely due to its large size (theoretical molecular mass of 3959.32 Da for the non-biotinylated peptide). However, we could compare the experimental molecular mass of the intact unmodified hCSD1 of 14764 Da (in perfect accord with the expected theoretical mass of 14764.28 Da) to the total experimental mass of b-hCSD1 that was 21018 Da. Under the assumption that the 13 lysines in the polypeptide are biotinylated, we expected a molecular mass of 20913 Da (i.e., 14764 + (13 × 473) = 20913 Da). Thus, from the mass spectrometry analysis it is plausible to conclude that the 13 lysines are biotinylated, while an extra mass of 105 Da is present. The nature of this additional 105 Da, likely a posttranslational modification, remains enigmatic. Yet, we can rule out that this (post-translational) modification occurs during the boiling of the cell suspension since both avi-hCSD1 and hCSD1 had the expected and correct experimental mass. Hence, some additional modification should have occurred only during (or after) the chemical biotinylation reaction. Nevertheless, since we detected the correct masses for all digested peptides except the N-terminal 38-residues long peptide, the modification can only be present in this segment.

With this approach combining molecular mass determination, peptide mass fingerprinting and MS/MS microsequencing, we suggested that all lysine positions in b-hCSD1 have been biotinylated (even identified at a residue-level). This was somewhat surprising based on the result of the HABA-based colorimetric quantification method where on average only 8 biotin molecules were attached per hCSD1 molecule. In our previous study, we reported based on this colorimetric assay that the chemical biotinylation of hCSD1 (i.e. b-hCSD1) yielded 2 mol biotin per mol of hCSD1 [7]. While this could point to the rather non-specific nature of the chemical biotinylation and the possible batch-to-batch dependence, this discrepancy might also be explained through the inaccuracy of determining the concentrations of IDPs [16].

Nonetheless, this analysis confirms that the in vivo biotinylation strategy allowed us to strictly control the extent and position in the sequence of the biotin addition, in contrast to the in vitro biotinylation that yields a multi-biotinylated protein.

3.3. Effect of the avi-tag on the structural properties of hCSD1 using NMR

We also examined if the avi-tag would interfere with the IDP nature of hCSD1. Therefore, we collected a 1H-15N transverse relaxation-optimized spectroscopy (TROSY) of the avi-tagged hCSD1 and compared it to the spectrum of its untagged counterpart (Fig. 3). The TROSY spectrum displays the low dispersion in the proton dimension that is typical for an intrinsically disordered protein [19,20]. We could observe a number of additional signals in the avi-hCSD1 spectrum, which agrees with the presence of 18 additional residues in the avi-tagged construct as compared to the untagged hCSD1. This also includes the appearance of a Trp indole resonance at 10 ppm δH that is uniquely present in the avi-tag (Fig. 3). Since the chemical shift is very sensitive to the chemical environment, for instance due to structural changes, we conclude from this dataset that the mere presence of the N-terminal avi-tag does not interfere with the IDP nature of hCSD1.

3.4. Effect of the biotinylation of hCSD1 on its binding properties

Since our mass spectrometry results revealed that chemical biotinylation lead to the modification of multiple lysines in hCSD1, we expected that the subsequent streptavidin-based immobilization of b-hCSD1 could display a reduced functionality in binding to its calpain substrate. With the b-avi-hCSD1, we anticipated that the full functionality of hCSD1 would be retained. Therefore, the effect of the biotinylation method on the binding properties of hCSD1 to calpain was analyzed using bio-layer interferometry (BLI). This BLI analysis relied on the immobilization of the biotinylated hCSD1 variants to the biosensor surface with subsequent exposure to various concentrations of m-calpain, whereby the association and dissociation phases were recorded. With this strategy, we could detect the concentration-dependent binding of m-calpain to both hCSD1 variants in real time (Fig. 4). The binding curves of b-avi-hCSD1 suggested that a simple 1:1 binding occurred, as the experimental data could be fitted with this model (Fig. 4A). For the immobilized b-hCSD1, the simple 1:1 model could not be applied to fit the data, whereas the heterogeneous binding mode gave the best fitting results (Fig. 4B). This confirmed, while b-avi-hCSD1 displayed a homogeneous binding behavior to m-calpain, that the chemical biotinylation in the case of b-hCSD1 has led to an intrinsic sample heterogeneity. The affinity constant of the interaction of b-avi-hCSD1 to calpain (73.1 nM) derived from the steady state analysis was two times lower than that of b-hCSD1 (134.4 nM) (Fig. 4C and D and Table 1). In addition to this apparent higher affinity, the association rate of calpain to b-avi-hCSD1 was also almost four times faster compared to b-hCSD1 (Table 1). These are likely explained as the result of the simultaneous biotinylation of multiple lysine residues along the hCSD1 sequence. This in vitro biotinylation might not only interfere with its flexibility when being immobilized onto the streptavidin biosensors, it could also reduce its overall binding capacity to calpain (as reflected in the reduced signal-to-noise for b-hCSD1 curves as compared to b-avi-hCSD1). The exact modus operandi of hCSD1 binding to the calcium-activated m-calpain surface was revealed when the crystal structures of the bound rat proteins were solved (Fig. 5A) [21,22]. The intrinsically disordered hCSD1 and its rat counterpart encompassed three segments that became structured upon binding: regions A and C form an alpha-helical element, while the extended region B actually covered the active site cleft of m-calpain (Fig. 6). Based on the x-ray structure (3DF0.pdb) we generated a homology model for the human complex of hCSD1 and m-calpain to visualize the position of the lysine residues in the visible structure (Fig. 5B) (supplementary material). These lysines are distributed along the sequence and 5 lysines (depicted in the spherical representation in orange in Fig. 5B) are actually modul-
3.5. Affinity purification of human m-calpain based on in vivo biotinylated hCSD1

Since we successfully applied an in vivo biotinylation strategy and verified the functionality of the avi-hCSD1 in its binding to m-calpain, we wanted to implement the b-avi-hCSD1 in an affinity chromatography to purify its calpain substrate. Our previously published affinity purification method for calpain was based on b-hCSD1 and required the separate purification of hCSD1 and its subsequent chemical biotinylation (Fig. 6) [7]. With the in vivo biotinylated b-avi-hCSD1 we envisaged that we could omit the requirement for calpastatin isolation and in vitro biotinylation and directly load the b-avi-hCSD1 containing lysate onto the streptavidin-based resin.

By applying a b-avi-hCSD1-containing lysate directly to the streptavidin-containing resin, followed by the cleared lysate that contains the calcium-bound inactive C105A m-calpain and finally the elution of calpain by applying EDTA to the resin, the yield of the calpain purification was increased by two times as compared to applying chemically biotinylated hCSD1 (b-hCSD1). From 1 L LB in which E. coli BL21(DE3) expresses the heterodimeric and inactive C105A mutant m-calpain we obtained 2 mg upon this new purification strategy, while the purity is retained at the same level as described before (Fig. 7) [7]. This is probably due to the fact that the in vivo biotinylation occurs specifically (and solely) at the N-terminus, thus allowing a more efficient and functional immobilization of hCSD1. The multi-biotinylated b-hCSD1 (13 biotin molecules along the 140-residue-long polypeptide according to our mass spectrometry data) can probably occupy multiple streptavidin sites, thereby (1) causing heterogeneity in its binding behavior (less available binding motifs) or (2) reducing the total number of b-hCSD1 that can be immobilized to the column. The single-biotinylated b-avi-hCSD1 is likely to retain its full capacity to capture m-calpain from biological mixture (see section 3.4) and likely also obtains a more uniform and higher loading density on the resin. In addition to the increased yield, this strategy also entails less hands-on time, less materials and consumables and less energy since there is no need for prior purification of hCSD1 that requires chemical biotinylation. Despite having observed the heat-resistant flagellin and the biotinylated BCCP during the development of this strategy, both contaminants were not observed in the final sample (Fig. 7). Therefore, we can conclude that the combination of in vivo biotinylation of hCSD1 with the single-chromatographic-step purification of m-calpain constitutes a real improvement of the original purification strategy (Fig. 6).

4. Conclusion and future perspectives

We presented a novel and improved method to isolate m-calpain based on calpastatin, whereby we have optimized our protein production workflow at the cloning (with a new tag), expression (co-transformation with pT7pol26 and co-expression of BirA) and purification level (single-resin affinity purification). The introduction of an avi-tag at the N-terminus of hCSD1 allowed for the specific in vivo biotinylation in an E. coli expression system. We characterized the avi-hCSD1 at the
Fig. 5. Representation of the crystal structure (A) of the rat m-calpain structure in complex with the rat calpastatin domain (3DF0.pdb) and the homology model (B) of the human m-calpain bound to hCSD1 (in cartoon representation). The heterodimeric m-calpain is depicted with the surface representation (rat in green, human in blue), the calpastatin domains are shown in the cartoon representation (pink or yellow) and the lysine residues in the visible calpastatin domains are highlighted in the sphere representation. The large subunits (corresponding to CAPN2) are represented in the dark color; the small subunits (corresponding to CAPNS1) are represented in the lighter color. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Schematic comparison of the various steps and procedures needed for the affinity purification of human m-calpain based on biotinylated versions of hCSD1. Our original affinity purification methodology was based on the recombinant expression of hCSD1, followed by a heating step (95 °C for 10 min) and clearance of insoluble material via centrifugation [7]. This sample was then purified by anion exchange chromatography (eluted with NaCl) and subjected to an in vitro chemical biotinylation protocol using a commercially available kit. The resulting biotinylated hCSD1 was then immobilized onto a streptavidin-based resin and used to capture recombinantly produced human m-calpain from the bacterial lysate (sonicated, centrifuged and supplemented with calcium). The complex between calpain and biotinylated hCSD1 was dissociated by applying EDTA as a third step onto the column, leading to the elution of calpain. Our novel and improved method is based on the co-expression of avi-tagged hCSD1 and the biotin-ligase BirA that covalently attaches biotin to avi-hCSD1. The biotinylated hCSD1 is compatible with heat treatment for IDP purification and can be immobilized directly onto the streptavidin-based resin without the need for any additional manipulation. The subsequent workflow for calpain affinity purification is the same as the original method, but leads to an increased protein yield.
partly supported by a pilot grant of Stichting Alzheimer Onderzoek (P#12017). Peter Tompa was supported by the Odysseus grant G.0029.12 from Research Foundation Flanders (FWO-Vlaanderen). The authors thank Ivo Vanoverstraeten for excellent technical assistance, Dr. Jesper S. Oeemig for critically reading the manuscript and Dr. Kenneth Verstraete (VIB-Ugent) for useful discussions.

Appendix A. Supplementary data
Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.pep.2018.01.002.

References

