Novel passive sampling for steroid hormones in water using Diffusive Gradients in Thin films and the ERE-CALUX bioassay

W. Guo1,2, K. Van Langenhove1, M. Elskens3, W. Baeyens1, Y. Gao4
1Vrije Universiteit Brussel (University of Brussels), Department of Analytical, Environmental and Geo-Chemistry (AMGC), Pleinlaan 2, 1050 Brussels, Belgium.
2School of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China

Framework

- Water Framework Directive consisting of 33 priority (hazardous) pollutants and 8 other chemicals under Annex II (2008/105/EC) in water quality assessment
- Stringent detection limits for AA-ESQ of watchlist chemicals (2013/39/EU)
 - Hormones at 0.05 ng/L and 0.4 ng/L for, respectively, EE2 and E2
- Classic spot sampling and sample pretreatment requires high volumes with current chemical detection methods (GC/MS-MS-M) in the range of 0.1-1ng/L.

Objectives

- Development of a time-integrated passive sampler for in-situ determination of estrogens in water using diffusive gradients in thin films (DGT) and having E2 as a model contaminant
- Independence of flow properties of the sampling environment requiring no post-calibration for uptake and binding characteristics
- Combined DGT approach with in vitro effect directed analysis for assessment of mixture activity otherwise missed by conventional methods during field work

Materials and Methods

Diffusive Gradients in Thin Films

- The total mass of analyte (M) accumulated on a resin over time (t) after passing through a well-defined area (A) with a known gradient (Dg), can be modeled according to Fick’s first law to determine the bulk water (Cw) concentration:

 \[D_g \frac{M}{A} = C_w \frac{M}{A} \]

 Whereby Dg is the effective diffusion coefficient of organics in the diffusive gel which can be calculated from lab experiments and corrected for temperature variations in the field

- DGT sampler:
 - Teflon base (2.5cm)
 - HVLP Durapore filter membrane (PVDF 0.45µm; 0.017cm thick)
 - Agarose diffusive gel (0.025-0.125cm thick)
 - XAD18 Resin gel (0.05cm thick)

 - Resin layers are fabricated in pre-heated casts and stored in 0.03M NaCl until use
 - After sampling, resins are collected and extracted using an ASE 200 (Dionex)
 - Spiked water samples are extracted using Oasis HLB (6cc; 200mg) cartridges

Bioanalytical estrogen activity measurements using CALUX

- Chemically Activated Luciferase gene Expression for ER binding
- VM7Luc4E2 (variant breast cancer MCF7) recombinant luciferase reporter assay
- Measure total endocrine activity as opposed to individual compound conc.

- Determine biological equivalence to E2 reference compound by calculating a BEQ or EEQ expressed as ng E2-equ./L (ng EEQ/L)
- Experiments carried out according to optimized XDS LUMI-CELL® and OECD TC455 protocols and guidelines

Results & Discussion

Uptake capacity of XAD18 resin and experimental Dg

- Adsorption to DGT components is minimal (less than 5%)
- The XAD18 resin accumulates linearly and with an efficiency close to 100%

- A theoretical diffusion coefficients Dg,29°C for E2 (5.17 x 10^-6 cm^2 s^-1) in diffusive gel is in close agreement to an experimental value for Dg,20°C of (4.65 ± 0.37 x 10^-6 cm^2 s^-1) and is comparable to the literature value in water Dg,0 of 4.88 x 10^-6 cm^2 s^-1

Field application and DBL (6) measurement

- Effluents of three sewage plants in Beijing, China were sampled by DGT and grab sampling (sampling time: 6hrs)

- DBL (6) measurements in the lab (6: 0.021cm) and field (6: 0.022cm) justify the use of a combined Dg of 5.16 x 10^-6 cm^2 s^-1 for estrogens
- Spot sampling (mix of samples t5 and t6) is not different from DGT sampling for Gaobedian (GBD), Qinghe (QG), and Liangxiang (LX) stations

Conclusion

- Development of a novel passive sampling DGT device capable of measuring low levels of estrogens (MDL of 0.026 ng E2-equ./L) and independent of river flows
- Effective diffusion coefficient Dg,29°C of (4.65 ± 0.37 x 10^-6 cm^2 s^-1) for E2 in agarose and δ determination of 0.022cm (field) that is non-negligible compared to Dg,0 (0.092cm)
- Future applications with multiple DGTs in combination with hyphenated MS techniques for EU WFD compliance monitoring

Acknowledgements

Innoviris in financing the Prospective Research Brussels project. Belize FELD and NemoSTEPS programme and FWO for travel opportunities. The CALUX bioreporter VM7Luc4E2 cell line was developed with funding from the National Institute of Environmental Health Sciences-Superfund Research grant (ES04949) in Prof. M.S. Denison (UC Davis), cells were kindly provided by Prof. M.S. Denison.