CHARACTERIZING THE GROUP OF COLEMAN AUTOMORPHISMS

Arne Van Antwerpen
August 21, 2017
Definition
Let G be a finite group and $\sigma \in \text{Aut}(G)$. If for any prime p dividing the order of G and any Sylow p-subgroup P of G, there exists a $g \in G$ such that $\sigma|_P = \text{conj}(g)|_P$, then σ is said to be a Coleman automorphism.
Definition

Let G be a finite group and $\sigma \in \text{Aut}(G)$. If for any prime p dividing the order of G and any Sylow p-subgroup P of G, there exists a $g \in G$ such that $\sigma|_P = \text{conj}(g)|_P$, then σ is said to be a Coleman automorphism.

Denote $\text{Aut}_{col}(G)$ for the set of Coleman automorphisms, $\text{Inn}(G)$ for the set of inner automorphisms and set

$$\text{Out}_{col}(G) = \frac{\text{Aut}_{col}(G)}{\text{Inn}(G)}.$$
Theorem (Hertweck and Kimmerle)

Let G be a finite group. The prime divisors of $|\text{Aut}_{\text{col}}(G)|$ are also prime divisors of $|G|$.
Theorem (Hertweck and Kimmerle)

Let G be a finite group. The prime divisors of $|\text{Aut}_{\text{col}}(G)|$ are also prime divisors of $|G|$.

Lemma

Let N be a normal subgroup of a finite group G. If $\sigma \in \text{Aut}_{\text{col}}(G)$, then $\sigma|_N \in \text{Aut}(N)$.
Let G be a group and R a ring (denote $U(RG)$ for the units of RG), then we clearly have that

$$GC_{U(RG)}(G) \subseteq N_{U(RG)}(G)$$
Let G be a group and R a ring (denote $U(RG)$ for the units of RG), then we clearly have that

$$GC_{U(RG)}(G) \subseteq N_{U(RG)}(G)$$

Is this an equality?

$$N_{U(RG)}(G) = GC_{U(RG)}(G)$$

Of special interest: $R = \mathbb{Z}$
If \(u \in N_{U(RG)}(G) \), then \(u \) induces an automorphism of \(G \):

\[
\varphi_u : G \rightarrow G
\]

\[
g \mapsto u^{-1}gu
\]
If $u \in N_{U(RG)}(G)$, then u induces an automorphism of G:

$$\varphi_u : G \rightarrow G$$

$$g \mapsto u^{-1}g u$$

Denote $\text{Aut}_U(G; R)$ for the group of these automorphisms ($\text{Aut}_U(G)$ if $R = \mathbb{Z}$) and $\text{Out}_U(G; R) = \text{Aut}_U(G; R)/\text{Inn}(G)$
Theorem (Jackowski and Marciniak)

G a finite group, R a commutative ring. TFAE

1. $N_{U(RG)}(G) = GC_{U(RG)}(G)$
2. $\text{Aut}_U(G; R) = \text{Inn}(G)$
Theorem (Jackowski and Marciniak)

Let G be a finite group, R a commutative ring. TFAE

1. $N_{U(RG)}(G) = GC_{U(RG)}(G)$
2. $\text{Aut}_U(G; R) = \text{Inn}(G)$

Theorem

Let G be a finite group. Then,

$$\text{Aut}_U(G) \subseteq \text{Aut}_{col}(G)$$
Theorem (Hertweck)

There exists a finite metabelian group G of order 2^597^2 with

$$\text{Aut}_{U(RG)}(G) \neq \text{Inn}(G).$$
GENERALIZED DIHEDRAL GROUPS
NILPOTENT-BY-CYCLIC GROUPS
Questions (Hertweck and Kimmerle)

1. Is $\text{Out}_{\text{col}}(G)$ a p'-group if G does not have C_p as a chief factor?
Questions (Hertweck and Kimmerle)

1. Is $\text{Out}_{\text{col}}(G)$ a p'-group if G does not have C_p as a chief factor?
2. Is $\text{Out}_{\text{col}}(G)$ trivial if $O_{p'}(G)$ is trivial?
Questions (Hertweck and Kimmerle)

1. Is $\text{Out}_{col}(G)$ a p'-group if G does not have C_p as a chief factor?

2. Is $\text{Out}_{col}(G)$ trivial if $O_{p'}(G)$ is trivial?

3. Is $\text{Out}_{col}(G)$ trivial if G has a unique minimal non-trivial normal subgroup?

Partial Answer (Hertweck, Kimmerle)

Besides giving several conditions, all three statements hold if G is assumed to be a p-constrained group.
Questions (Hertweck and Kimmerle)

1. Is $\text{Out}_{col}(G)$ a p'-group if G does not have C_p as a chief factor?

2. Is $\text{Out}_{col}(G)$ trivial if $O_{p'}(G)$ is trivial?

3. Is $\text{Out}_{col}(G)$ trivial if G has a unique minimal non-trivial normal subgroup?

Partial Answer (Hertweck, Kimmerle)

Besides giving several conditions, all three statements hold if G is assumed to be a p-constrained group.
Partial Answers (Van Antwerpen)

1. *No new result.*
Partial Answers (Van Antwerpen)

1. No new result.

2. True, if $O_p(G) = O_{p'}(G) = 1$, where p is an odd prime and the order of every direct component of $E(G)$ is divisible by p.
Partial Answers (Van Antwerpen)

1. No new result.
2. True, if $O_p(G) = O_{p'}(G) = 1$, where p is an odd prime and the order of every direct component of $E(G)$ is divisible by p.
3. True, if the unique minimal non-trivial normal subgroup is non-abelian. True, if question 2 has a positive answer.
Inkling of Idea

In case G has a unique minimal non-trivial normal subgroup N, which we may assume to be abelian, we may be able to use the classification of the simple groups and the list of all Schur multipliers to give a technical proof.
Inkling of Idea

In case G has a unique minimal non-trivial normal subgroup N, which we may assume to be abelian, we may be able to use the classification of the simple groups and the list of all Schur multipliers to give a technical proof.

Related Question

Gross conjectured that for a finite group G with $O_{p'}(G) = 1$ for some odd prime p, p-central automorphisms of p-power order are inner. Hertweck and Kimmerle believed this is possible using the classification of Schur multipliers.
REFERENCES

4. E.C. Dade. Locally trivial outer automorphisms of finite groups.