Water Injection in a micro Gas Turbine
Montero Carrero, Marina; De Paepe, Ward; Bram, Svend; Parente, Alessandro; Contino, Francesco

Publication date:
2014

Citation for published version (APA):
Water injection in a micro Gas Turbine
Marina Montero Carrero, Ward De Paepe, Svend Bram, Alessandro Parente, Francesco Contino
Vrije Universiteit Brussel
Department of Mechanical Engineering

Limitations of micro Gas Turbines for Combined Heat and Power

Micro Gas Turbines (mGTs) offer various advantages for Combined Heat and Power (CHP) generation compared to internal combustion engines: cleaner exhaust, lower maintenance cost, concentration of the residual heat in a single source, etc.

The main disadvantage of mGTs is their low electric efficiency (~30%). When the heat demand decreases (e.g. during summer) the overall efficiency of the cycle substantially drops down along with the economic feasibility of the plant.

Flexible heat production is possible with micro Humid Air Turbines (mHATs)

Water injection in mGTs allows increasing the electric efficiency in moments of low heat demand by re-introducing the residual heat in the flue gas back into the cycle.

Conclusions

The mGT Turbec T100 installed at the VUB has been turned into an mHAT and equipped with an innovative spray saturation tower. Preliminary tests show a 2% total and 8% relative electrical efficiency increase with water injection at part load operation.

We would like to thank Julien Blondeau and Emmanuelle Bertrand from Laborelec and Xavier Coppin from Electrabel for their support and involvement in this project.

Typical electricity and heat demand profiles of a group of 120 average European dwellings.

VUB lab
Department of Mechanical Engineering
Vrije Universiteit Brussel

Turbec T100 technical details:
Power output: 100 kWth 165 kWth
Efficiency: 30% electric 80% total CHP

New, innovative experimental mHAT facility at Vrije Universiteit Brussel

At the VUB, the mGT Turbec T100 has been transformed into an mHAT by adding a spray saturation tower to humidify the compressed air. Unlike traditional saturation towers — which make use of packing material — in a spray saturator the contact area between water and air is boosted by atomising the inlet water flow through nozzles.

Simulations in Aspen Plus predict a 4.8% absolute potential electrical efficiency increase with water injection in this facility.

Preliminary tests at part load confirm mHAT's efficiency increase

Results from several test campaigns confirm the stable operation of VUB's mHAT. In order to avoid compressor surge, air was bled from the compressor.

As expected, rising water injection levels lead to an increase of both power output and electrical efficiency.

Layout of the micro humid air turbine based on the mGT Turbec T100 installed at the VUB. In white, the typical components of a recuperated mGT. In orange, the water system required for an mHAT (saturation tower, feedwater, pump).

Sankey diagram based on simulations of the Turbec T100 working as an mHAT. The diagram displays the enthalpy flows (in kW) through the different cycle components.