A Dynamic Model of Cash Management and Payment Choices with Limited Card Acceptance

Carlos Arango
Yassine Bouhdaoui
David Bounie
Observations

• Nearly full adoption of payment cards (debit/credit) by the consumers
 – e.g. Canada 99%, US 88%, Germany 94%, Austria 86%, the Netherlands 100%.

• However, the card is not always used in transactions when the option is brought about by retailers.
 – Canada: average card acceptance rate 73%, market share of cards by volume 44%,
 – Austria: 63% vs 16%,
 – Germany: 57% vs 15%.
Observations

- Detailed market share of the card (debit/credit) conditional on the acceptance by merchants in Canada:
Observations

- Detailed market share of the card (debit/credit) conditional on the acceptance by merchants in Canada:

A large fraction of consumers do not use card in transactions especially for low amounts.
One explanation

One explanation in the literature is the ‘Cash First’ payment policy:

- Agents use cash whenever they have enough at hand.
One explanation

- One explanation in the literature is the ‘Cash First’ payment policy:
 - Agents use cash whenever they have enough at hand.

- Bouhdaoui and Bounie (2012): the ‘Cash First’ rule (a cash holding criterion) fits better the payment choice of the public than the transaction size criterion.
- Arango et al. (2014): the ‘Cash First’ rule replicates well the market share of cash in three countries.
Not the only rule

- Superimposing the cumulative distribution of cash holdings gives:
Not the only rule

- Huynh et al. (2014): the share of card payments when agents have enough cash at hand:
 - 35% in Canada,
 - 21% in Austria.
Objective of the paper

Provide the micro-foundations of a ‘Card First’ payment policy.
Plan

1. Introduction
2. The model
3. The distribution of cash holdings
4. Card First payment policy
5. Simulations for Canada
6. Results
Plan

1. Introduction
2. The model
3. The distribution of cash holdings
4. Card First payment policy
5. Simulations for Canada
6. Results
The model

• A model combining the cash management and payment choice decisions.
 – “Payment instrument choice is an integral part of consumers’ cash management practice” (Briglevics and Schuh, 2014).

• Includes features of the model of Alvarez and Lippi (2015):
 – Free opportunities to adjust cash balances at a probability f.
 – Costly cash withdrawals.
 – Variable cost for card payment $\gamma \cdot x$, with x the transaction size.
• **New features:**

1. **Discrete transactions:**
 - $\pi^D(x)$ refers to the distribution of transactions.

2. **Uncertainty on the transaction size:**
 - The agent cannot anticipate the sequencing of transactions.

3. **Limited card acceptance:** $\alpha(x) < 1$, for some x.
 - The acceptance varies with the transaction size.
The model

• A period is divided into two subperiods:
 – 1st subperiod: The agent decides upon adjusting cash balances.
 • Free or at a fixed cost b.

 – 2nd subperiod: The agent faces a transaction with a given status for card acceptance.
 • If he pays with card: $\gamma \cdot x$.
 • If the card is not accepted and the cash holdings are not sufficient:
 – ‘unscheduled’ cash withdrawal: $\mu \cdot b$.
 • Opportunity cost for holding cash $k \cdot m$.
The model

- Equilibrium:
 - The value functions: the expected discounted cost of payments
 - at the beginning of the first subperiod: $V_t(m)$,
 - at the beginning of the second subperiod: $v_t(m)$.

- 1st subperiod:
 \[V_t(m) = f \cdot v_t(\bar{m}) + (1 - f) \cdot \min \{ v_t(\bar{m}) + b , v_t(m) \} \]
 with \[v_t(\bar{m}) = \min_{m} v_t(m). \]
The model

- 2^{nd} subperiod, the payment choice problem:

$$v_t(m) = \sum_x \pi^D(x) \cdot [\alpha(x) \cdot v^a_t(m, x) + (1 - \alpha(x)) \cdot v^{na}_t(m, x)]$$
The model

– 2nd subperiod, the payment choice problem:

\[v_t(m) = \sum_x \pi^D(x) \cdot [\alpha(x) \cdot v^a_t(m, x) + (1 - \alpha(x)) \cdot v^{na}_t(m, x)] \]

• The value function when the card is accepted:

\[
v^a_t(m, x) = \begin{cases}
 k \cdot m + \min\{\beta \cdot V_{t+1}(m - x), \gamma \cdot x + \beta \cdot V_{t+1}(m)\}; & \text{if } m \geq x \\
 k \cdot m + \gamma \cdot x + \beta \cdot V_{t+1}(m); & \text{if } m < x
\end{cases}
\]
The model

- **2nd subperiod, the payment choice problem:**

\[
v_t(m) = \sum_x \pi^D(x) \cdot [\alpha(x) \cdot v^a_t(m, x) + (1 - \alpha(x)) \cdot v^{na}_t(m, x)]
\]

- The value function when the card is accepted:

\[
v^a_t(m, x) = \begin{cases}
 k \cdot m + \min(\beta \cdot V_{t+1}(m - x), \gamma \cdot x + \beta \cdot V_{t+1}(m)) ; & \text{if } m \geq x \\
 k \cdot m + \gamma \cdot x + \beta \cdot V_{t+1}(m) ; & \text{if } m < x
\end{cases}
\]
The model

2nd subperiod, the payment choice problem:

\[v_t(m) = \sum_x \pi^D(x) \cdot [\alpha(x) \cdot v^a_t(m, x) + (1 - \alpha(x)) \cdot v^{na}_t(m, x)] \]

- The value function when the card is accepted:

\[v^a_t(m, x) = \begin{cases}
 k \cdot m + \min\{\beta \cdot V_{t+1}(m - x), \gamma \cdot x + \beta \cdot V_{t+1}(m)\}; & \text{if } m \geq x \\
 k \cdot m + \gamma \cdot x + \beta \cdot V_{t+1}(m); & \text{if } m < x
\end{cases} \]
The model

- 2nd subperiod, the payment choice problem:

\[
v_t(m) = \sum_x \pi^D(x) \cdot \left[\alpha(x) \cdot v_t^a(m, x) + (1 - \alpha(x)) \cdot v_t^{na}(m, x) \right]
\]

- The value function when the card is accepted:

\[
v_t^a(m, x) = \begin{cases}
 k \cdot m + \min\{\beta \cdot V_{t+1}(m - x), \gamma \cdot x + \beta \cdot V_{t+1}(m)\}; & \text{if } m \geq x \\
 k \cdot m + \gamma \cdot x + \beta \cdot V_{t+1}(m); & \text{if } m < x
\end{cases}
\]

- The value function when the card is not accepted:

\[
v_t^{na}(m, x) = \begin{cases}
 k \cdot m + \beta \cdot V_{t+1}(m - x); & \text{if } m \geq x \\
 k \cdot m + \mu \cdot b + \beta \cdot V_{t+1}(\bar{m}); & \text{if } m < x.
\end{cases}
\]
The model

- 2nd subperiod, the payment choice problem:

\[v_t(m) = \sum_x \pi^D(x) \cdot [\alpha(x) \cdot v_t^a(m, x) + (1 - \alpha(x)) \cdot v_t^{na}(m, x)] \]

- The value function when the card is accepted:

\[v_t^a(m, x) = \begin{cases}
 k \cdot m + \min\{\beta \cdot V_{t+1}(m - x), \gamma \cdot x + \beta \cdot V_{t+1}(m)\}; & \text{if } m \geq x \\
 k \cdot m + \gamma \cdot x + \beta \cdot V_{t+1}(m); & \text{if } m < x
\end{cases} \]

- The value function when the card is not accepted:

\[v_t^{na}(m, x) = \begin{cases}
 k \cdot m + \beta \cdot V_{t+1}(m - x); & \text{if } m \geq x \\
 k \cdot m + \mu \cdot b + \beta \cdot V_{t+1}(\bar{m}); & \text{if } m < x.
\end{cases} \]
The model

- **Cash withdrawal decision** \(\Rightarrow I^w(m) \) the indicator function of costly cash withdrawals.
- **Payment choices** \(\Rightarrow I^c(m, x) \) the indicator function of cash payments when the card is accepted.
- \(p = (\bar{m}, I^w, I^c) \) fully defines a cash management and payment choice policy.
The model

- V_t satisfies a stochastic dynamic programming problem:

$$V_t = T(V_{t+1}),$$

with

$$T(V_{t+1})(m) = \min_{p \in \mathcal{P}} \{ \tilde{r}(m, p) + \beta \cdot \sum_{m'} \tilde{\lambda}(m', m, p) \cdot V_{t+1}(m') \}.$$
The model

• V_t satisfies a stochastic dynamic programming problem:

$$V_t = T(V_{t+1}),$$

with

$$T(V_{t+1})(m) = \min_{p \in \mathcal{P}} \{ \tilde{r}(m, p) + \beta \cdot \sum_{m'} \tilde{\lambda}(m', m, p) \cdot V_{t+1}(m') \}.$$

• We call an $\textbf{optimal}$ policy, a policy $p_V = (\bar{m}_V, I^w_V, I^c_V)$ associated to a $\textbf{fixed point}$ of the mapping T:

$$V = T(V).$$
The model

- V_t satisfies a stochastic dynamic programming problem:

$$V_t = T(V_{t+1}),$$

with

$$T(V_{t+1})(m) = \min_{p \in \mathcal{P}} \{ \tilde{r}(m, p) + \beta \cdot \sum_{m'} \tilde{\lambda}(m', m, p) \cdot V_{t+1}(m') \}.$$

- We call an **optimal** policy, a policy $p_V = (\tilde{m}_V, I^w_V, I^c_V)$ associated to a **fixed point** of the mapping T:

$$V = T(V).$$

- **Theorem 1:** Given a model calibration $(k > 0, \gamma \geq 0, b > 0)$, T has **unique fixed point** on the space of bounded functions i.e. there is a **unique** optimal policy.
The model

- Optimal policy \Rightarrow the share of card payments.
The model

• Optimal policy \Rightarrow the share of card payments.

• **Example**: Consider the following case:
 - **payment choice policy**: ‘Cash First’.
 - **optimal cash balance**: $\bar{m} = 100$.
 - **distribution of transactions**: only two transactions $x_1=20$ and $x_2=70$ with the same probability.
 - **card acceptance**: full.
The model

• Optimal policy ⇒ the share of card payments.

• **Example**: Consider the following case:
 – payment choice policy: ‘Cash First’.
 – optimal cash balance: $m = 100$.
 – distribution of transactions: only two transactions $x_1=20$ and $x_2=70$ with the same probability.
 – card acceptance: full.

➢ initial cash balance $m_0=100$
The model

• Optimal policy \(\Rightarrow \) the share of card payments.

• **Example**: Consider the following case:

 – payment choice policy: ‘Cash First’.

 – optimal cash balance: \(m = 100 \).

 – distribution of transactions: only two transactions \(x_1 = 20 \) and \(x_2 = 70 \) with the same probability.

 – card acceptance: full.

\[m_{+1} = \begin{cases} 80 & \frac{1}{2} \\ 30 & \frac{1}{2} \end{cases} \]

• initial cash balance \(m_0 = 100 \)
The model

- **Optimal policy** ⇒ the share of card payments.

- **Example**: Consider the following case:
 - payment choice policy: ‘Cash First’.
 - optimal cash balance: $m = 100$.
 - distribution of transactions: only two transactions $x_1=20$ and $x_2=70$ with the same probability.
 - card acceptance: full.

- initial cash balance $m_0=100$

 - $m_1=80$ \(\frac{1}{2}\) \quad m_2=60 \(\frac{1}{4}\)
 - $m_1=30$ \(\frac{1}{2}\) \quad m_2=10 \(\frac{1}{4}\)
 - $m_2=30$ \(\frac{1}{4}\) \quad m_2=10 \(\frac{1}{4}\) ...
Prior step: Characterize the distribution of cash holdings resulting from an optimal policy.
Plan

1. Introduction

2. The model

3. The distribution of cash holdings

4. Card First payment policy

5. Simulations for Canada

6. Results
The distribution of cash holdings

- The law of motion:
 - \(\pi_t^{(a)} \) and \(\pi_t^{(b)} \) refer to the distributions of cash holdings at the beginning of the first and second subperiods, respectively.
The distribution of cash holdings

- The law of motion:
 - \(\pi_t^{(a)} \) and \(\pi_t^{(b)} \) refer to the distributions of cash holdings at the beginning of the first and second subperiods, respectively.
 - Law of motion of \(\pi_t^{(a)} \) and \(\pi_t^{(b)} \) for \(m \neq \bar{m} \):

\[
\pi_t^{(b)}(m) = (1 - f) \cdot (1 - \Gamma_w(m)) \cdot \pi_t^{(a)}(m)
\]
The distribution of cash holdings

- The law of motion:
 - $\pi_t^{(a)}$ and $\pi_t^{(b)}$ refer to the distributions of cash holdings at the beginning of the first and second subperiods, respectively.
 - Law of motion of $\pi_t^{(a)}$ and $\pi_t^{(b)}$ for $m \neq \bar{m}$:
 \[
 \pi_t^{(b)}(m) = (1 - f) \cdot (1 - \Gamma^w(m)) \cdot \pi_t^{(a)}(m)
 \]

 and
 \[
 \pi_{t+1}^{(a)}(m) = \sum_x \alpha(x) \cdot \pi^D(x) \cdot \left(\Gamma^c(m + x, x) \cdot \pi_t^{(b)}(m + x) + (1 - \Gamma^c(m, x)) \cdot \pi_t^{(b)}(m) \right)
 + \sum_x (1 - \alpha(x)) \cdot \pi^D(x) \cdot \pi_t^{(b)}(m + x).
 \]
 - The normalization condition gives the value for $m = \bar{m}$.
The distribution of cash holdings

- **Lemma:** Agents following an optimal policy give up cash holdings above the optimal cash balance \bar{m} after a finite number of periods.

- **Theorem 2:** An optimal cash management and payment choice policy gives rise to a **unique** stationary distribution of cash holdings.
Plan

1. Introduction
2. The model
3. The distribution of cash holdings
4. Card First payment policy
5. Simulations for Canada
6. Results
‘Card First’ payment policy

(work in progress)

- **Theorem**: Agents facing only one transaction size with a limited card acceptance make an **optimal ‘Card First’ payment** for at least one cash balance if the cost of the card is sufficiently low.

Formally:

Let \(x > 0 \) with \(\alpha(x) < 1 \) and \(\pi^D(x) = 1 \), we have:

\[\exists \gamma_c > 0 \text{ such that } \forall \gamma \leq \gamma_c, \exists m \geq x \text{ satisfying } I^c(m, x) = 0. \]
Plan

1. Introduction
2. The model
3. The distribution of cash holdings
4. Card First payment policy
5. Simulations for Canada
6. Results
Simulations for Canada

- Survey commissioned by the BoC in 2009:
 - Study individual payment patterns
 - Focus on transactions at the point of sale.

Distribution of transactions

Acceptance rate of cards
Model calibration

• **Reference scenario:**
 – Cost of a cash withdrawal: \(b = 1.5\$ \).
 – Penalty factor on unscheduled cash withdrawals: \(\mu = 5 \).
 – Probability of free withdrawal opportunities: \(f = 4\% \).

• We test a **non restrictive** set of values for \(\gamma \):
 – from 0% to 2%.

• Perform robustness checks for \(b \) from 0.5$ to 3.5$.
Model calibration

• Methodology:

1. Determine the optimal policy by computing iterations of V_t starting from an initialization V_0.
 Convergence criteria: $\|V_{t+1} - V_t\| < 1 \times 10^{-4}$.

2. Compute the distribution of cash holdings resulting from the optimal policy.
Plan

1. Introduction
2. The model
3. The distribution of cash holdings
4. Card First payment policy
5. Simulations for Canada
6. Results
Results

Reference scenario (‘Card First’ payments in blue)

$\gamma = 0\%$

$\gamma = 0.4\%$

- x-axis: Cash holdings
- y-axis: Transaction size
Results

Reference scenario (‘Card First’ payments in blue)

\[\gamma = 1\% \]

\[\gamma = 2\% \]

x-axis: Cash holdings
y-axis: Transaction size
Results

- Share of ‘Card First’ payments as a function of cash holdings:
Results

- Share of ‘Card First’ payments as a function of cash holdings:

Upper bound on cash holdings in the stationary equilibrium (\bar{m})
Results

- Share of ‘Card First’ payments as a function of cash holdings:
Results

- Share of ‘Card First’ payments as a function of cash holdings:
Results

- Share of ‘Card First’ payments as a function of cash holdings

![Graph showing the share of 'Card First' payments as a function of cash holdings. The graph has a horizontal axis labeled with cash holdings ranging from 0 to 220, and a vertical axis labeled with percentage from 0% to 100%. Three curves are shown for different values of γ: $\gamma=0\%$, $\gamma=0.4\%$, and $\gamma=1\%$. The curves demonstrate how the share of 'Card First' payments decreases as cash holdings increase.]
Results

• Share of ‘Card First’ payments as a function of cash holdings:
Results

- Share of ‘Card First’ payments as a function of cash holdings:
Results

- Impact of the cost of withdrawal, b:

 Average share of ‘Card First’ payments

![Graph showing the impact of cost of withdrawal on 'Card First' payments]
Results

• Simulations fit well statistics on the average share of cash holdings (84$) and the global share of card payments (50%) for:
 - $\gamma = 0.4\%$ and $b=1.5$ (3% of daily expenditures), close to the reference scenario of Alvarez and Lippi (2015).
Summary

- Introducing a model of cash management and payment choice with discrete transactions and limited acceptance of cards.

- Uncertainty on the transaction size and the acceptance of cards give rise to an optimal ‘Card First’ payment policy.
 - Cash burning effect: the share of ‘Card First’ payments tends to decrease with the cash balances.
 - An optimal policy can incorporate both the ‘Cash First’ and the ‘Card First’ rules for different levels of cash balances.

- Our reference scenario fits well the observed average cash holdings and the global market share of card payments.
Future research

- The impact of the card acceptance on the payment choices.
- Assess precautionary cash holdings: withdrawals before cash balances are depleted.
Thank you for your attention.

Questions?