This paper presents a new key management protocol for group-based communications in non-hierarchical wireless sensor networks (WSNs), applied on a recently proposed IP-based multicast protocol. Confidentiality, integrity, and authentication are established, using solely symmetric-key-based operations. The protocol features a cloud-based network multicast manager (NMM), which can create, control, and authenticate groups in the WSN, but is not able to derive the actual constructed group key. Three main phases are distinguished in the protocol. First, in the registration phase, the motes register to the group by sending a request to the NMM. Second, the members of the group calculate the shared group key in the key construction phase. For this phase, two different methods are tested. In the unicast approach, the key material is sent to each member individually using unicast messages, and in the multicast approach, a combination of Lagrange interpolation and a multicast packet are used. Finally, in the multicast communication phase, these keys are used to send confidential and authenticated messages. To investigate the impact of the proposed mechanisms on the WSN, the protocol was implemented in ContikiOS and simulated using COOJA, considering different group sizes and multi-hop communication. These simulations show that the multicast approach compared to the unicast approach results in significant smaller delays, is a bit more energy efficient, and requires more or less the same amount of memory for the code.
Original languageEnglish
Pages (from-to)1-15
Number of pages15
JournalComputers
Volume8
Issue number27
Publication statusPublished - 19 Mar 2019

    Research areas

  • multicast, security, mutual authentication, wireless sensor networks, lagrange interpolation, symmetric key cryptography

ID: 44905705