This work aims to study an aluminosilicate phosphate cementitious matrix. The cementitious matrix was studied on paste samples. The synthesis of metakaolinite phosphate cement (MKPC) was investigated using calorimetric techniques. A systematic study was performed by emphasizing a broad range of Al/P molar ratios, covering the different behavior of the material to the extremes, as well as the optimum composition. X-ray diffraction and scanning electron microscopy revealed that the final structure was mainly an amorphous network, albeit with some non-reacted phases. The compressive strength was studied on mortars using a cement/sand ratio of 1:3. MKPC specimens with Al/P ratios close to 1/1 showed optimal behavior. MKPCs with Al/P ratios above 1/1 were characterized by high porosity and low strength, whereas MKPCs with Al/P < 1 contained an excess of phosphates. The influence of the Al/P molar ratio on compressive strength was also studied, reaching a maximum of 68 MPa for the optimum composition. Based on the results, MKPC may be a promising candidate for construction purposes.

Original languageEnglish
Article number442
Number of pages15
Issue number3
Publication statusPublished - 31 Jan 2019

    Research areas

  • Acidic activation, Chemically bonded phosphate cements, Geopolymers, Inorganic polymers, Metakaolin

ID: 45371612