The large push for more environmental energy storage solutions for the automotive industry by different actors has led to the usage of lithium-ion capacitors (LICs) combining the features of both lithium-ion batteries (LIBs) and electric-double layer capacitors (EDLCs). In this paper, the thermal behavior of two types of advanced LICs has been thoroughly studied and analyzed by developing a three-dimensional (3D) thermal model in COMSOL Multiphysics®. Such an extensive and accurate thermal 3D has not been fully addressed in literature, which is a key building block for designing battery packs with an adequate thermal management. After an extensive measurement campaign, the high accuracy of the developed model in this paper is proven for two types of LICs, the 3300 F and the 2300 F. An error between the simulation and measurements is maximum 2 °C. This 3D model has been developed to gain insight in the thermal behavior of LICs, which is necessary to develop a thermal management system, which can ensure the safe operation of LICs when used in modules or packs.
Original languageEnglish
Article number041005
Number of pages8
JournalJournal of Electrochemical Energy Conversion and Storage
Issue number4
StatePublished - 6 Sep 2017

ID: 32695935