• Gil Leurquin-Sterk
  • Jenny Ceccarini
  • Cleo Lina Crunelle
  • Akila Weerasekera
  • Bart de Laat
  • Uwe Himmelreich
  • Guy Bormans
  • Koen Van Laere

Converging preclinical evidence links extrastriatal dopamine release and glutamatergic transmission via the metabotropic glutamate receptor 5 (mGluR5) to the rewarding properties of alcohol. To date, human evidence is lacking on how and where in the brain these processes occur. Mesocorticolimbic dopamine release upon intravenous alcohol administration and mGluR5 availability were measured in 11 moderate social drinkers by single-session [ 18F]fallypride and [ 18F]FPEB positron emission tomography, respectively. Additionally, baseline and postalcohol glutamate and glutamine levels in the anterior cingulate cortex (ACC) were measured by using proton-magnetic resonance spectroscopy. To investigate differences in reward domains linked to both neurotransmitters, regional imaging data were related to subjective alcohol responses. Alcohol induced significant [ 18F]fallypride displacement in the prefrontal cortex (PFC), temporal and parietal cortices and thalamus (P < 0.05, corrected for multiple comparisons). Dopamine release in the ACC and orbitofrontal and ventromedial PFCs were correlated with subjective ‘liking’ and ‘wanting’ effects (P < 0.05). In contrast, baseline mGluR5 availability was positively correlated with the ‘high’ effect of alcohol in dorsolateral, ventrolateral and ventromedial PFCs and in the medial temporal lobe, thalamus and caudate nucleus (P < 0.05). Although neither proton-magnetic resonance spectroscopy glutamate nor glutamine levels were affected by alcohol, baseline ACC glutamate levels were negatively associated with the alcohol ‘liking’ effect (P < 0.003). These data reveal new mechanistic understanding and differential neurobiological underpinnings of the effects of acute alcohol consumption on human behavior. Specifically, prefrontal dopamine release may encode alcohol ‘liking’ and ‘wanting’ effects in specific areas underlying value processing and motivation, whereas mGluR5 availability in distinct prefrontal–temporal–subcortical regions is more related to the alcohol ‘high’ effect.

Original languageEnglish
Pages (from-to)931-944
Number of pages14
JournalAddiction Biology
Issue number3
Publication statusPublished - May 2018

    Research areas

  • [H-1]MRS, alcohol, dopamine, glutamate, PET, subjective effects, [ H]MRS

ID: 38190322