DOI

The assembly industry is shifting more towards customizable products, or requiring assembly of small batches. This requires a lot of reprogramming, which is expensive because a specialized engineer is required. It would be an improvement if untrained workers could help a cobot to learn an assembly sequence by giving advice. Learning an assembly sequence is a hard task for a cobot, because the solution space increases drastically when the complexity of the task increases. This work introduces a novel method where human knowledge is used to reduce this solution space, and as a result increases the learning speed. The method proposed is the IRL-PBRS method, which uses Interactive Reinforcement Learning (IRL) to learn from human advice in an interactive way, and uses Potential Based Reward Shaping (PBRS), in a simulated environment, to focus learning on a smaller part of the solution space. The method was compared in simulation to two other feedback strategies. The results show that IRL-PBRS convergesmore quickly to a valid assembly sequence policy and does this with the fewest human interactions. Finally, a use case is presented where participants were asked to program an assembly task. Here, the results show that IRL-PBRS learns quickly enough to keep up with advice given by a user, and is able to adapt online to a changing knowledge base.

Original languageEnglish
Article number104
Number of pages16
JournalRobotics
Volume8
Issue number4
DOIs
Publication statusPublished - 16 Dec 2019

ID: 48694757